A.D. Korobov, L.A. Korobova
Lithogenesis associated with tectonic and hydrothermal activation: basis for formation of commercial hydrocarbon accumulations
DOI 10.31087/0016-7894-2022-1-49-59
Key words: hydrocarbon; riftogenic basin; tectonic and hydrothermal activation; vitrinite scale; homogenization temperature; gas-liquid inclusions; level of paleothermal mismatch.
For citation: Korobov A.D., Korobova L.A. Lithogenesis associated with tectonic and hydrothermal activation: basis for formation of commercial hydrocarbon accumulations. Geologiya nefti i gaza. 2022;(1):49–59. DOI: 10.31087/0016-7894-2022-1-49-59. In Russ.
Geodynamic conditions favourable for hydrocarbon accumulation are notable for mandatory combination of catagenetic (regional background) and hydrothermal (local superposed) rock reworking. In terms of energy, it is heating up caused by durable continuous subsidence although strengthened by hydrothermal process triggered by short-term seismotectonic event, i.e., tectonic and hydrothermal activity. The problem is that geologists often disregard a seismotectonic factor, which, in the presence of hot waters sharply increases mass transfer in subsurface. This causes a swift expulsion (migration?) of micro-oil from source rocks, and in favourable conditions — formation of hydrocarbon accumulations. The authors prove that tectonic and hydrothermal activation accompanies structural changes in riftogenic basins. Epigenetic processes accompanying these changes primarily occur under control of heat and mass convective transfer. Gas-liquid inclusions of newly formed minerals, along with the minerals themselves, are indicative of tectonic and hydrothermal phenomena. The mobility of gas-liquid hydrocarbons during expulsion and lateral migration depends, first of all, on the intensity of superposed tectonic and hydrothermal impact. The intensity index of this impact is equal to the ratio of maximum paleotemperature of homogenization to paleotemperature calculated from vitrinite reflectance. This index estimated for the same intervals of geological section characterises the level of paleothermal mismatch of the natural system. The index can be used in prediction of hydrocarbon occurrence in certain territory. In the promising riftogenic areas where source rocks have reached the temperature zone 80–160 °С owing to conductive heating, values of paleothermal mismatch range (approximately) from 1.4 to 2.3.
Yurii A. Volozh ORCiD
Doctor of Geological and Mineralogical Sciences,
Professor, Head of a Department
Saratov National Research State University
named after N.G. Chernyshevsky,
83, ul. Astrakhanskaya, Saratov, 410012, Russia
e-mail: korobad@yandex.ru
Georgii N. Gogonenkov ORCiD
Candidate of Geological and Mineralogical Sciences,
Associate Professor
Saratov National Research State University
named after N.G. Chernyshevsky,
83, ul. Astrakhanskaya, Saratov, 410012, Russia
e-mail: korob@info.sgu.ru
1. Ammosov I.I., Gorshkov V.I., Grechishnikov N.P. Paleotemperatury preobrazovaniya neftegazonosnykh otlozhenii [Paleotemperatures of oil and gas bearing deposits transformation]. Moscow: Nauka; 1980. 270 p. In Russ.
2. Kanana Ya.F., Matveev A.K. K voprosu opredeleniya paleotemperatur osadochnykh tolshch [More on paleotemperature determination in sedimentary sequences]. Byulleten’ MOIP. Otdel. geol. 1986;61(4):110–121. In Russ.
3. Grechishnikov N.P. Geotermicheskie protsessy neftegazoobrazovaniya [Geothermal processes of oil and gas generation]. Dokl. AN SSSR. 1991;319(2):427–430. In Russ.
4. Korobov A.D., Korobova L.A. Pul’siruyushchii stress kak otrazhenie tektono-gidrotermal’noi aktivizatsii i ego rol’ v formirovanii produktivnykh kollektorov chekhla (na primere Zapadnoi Sibiri) [Pulsating stress as a response to tectonic and hydrothermal activation and its role in productive reservoirs formation in sedimentary cover (by the example of Western Siberia)]. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdenii. 2011;(6):4–12. In Russ.
5. Korobov A.D., Korobova L.A. Konvektivnyi teplomassoperenos i formirovanie neftegazonosnykh kollektorov porod perekhodnogo kompleksa i chekhla [Heat and mass convective transfer, and formation of oil and gas bearing reservoirs within transitional sequence and sedimentary cover]. Otechestvennaya geologiya. 2012;(6):3–12. In Russ.
6. Vassoevich N.B. Teoriya osadochno-migratsionnogo proiskhozhdeniya nefti [Sedimentary-migrational theory of oil origin]. Izvestiya AN SSSR, Ser. geol. 1967;(11):135–156. In Russ.
7. Vassoevich N.B., Korchagina Yu.I., Lopatin N.V., Chernyshev V.V. Glavnaya faza nefteobrazovaniya [Main oil generation phase]. Vestnik Mosk. un-ta., ser. geol. 1969;(6):3–27. In Russ.
8. Bazhenova O.K., Burlin Yu.K., Sokolov B.A., Khain V.E. Geologiya i geokhimiya nefti i gaza [Oil and gas geology and geochemistry]. Moscow: MGU; 2000. 384 p. In Russ.
9. Grechishnikov N.P., Stepanov Yu.V. Geodinamika i protsessy neftegazoobrazovaniya [Geodynamics and petroleum generation processes]. Izvestiya vuzov. Geologiya i razvedka. 1991;(8):68–78. In Russ.
10. Kartsev A.A., Vagin S.B., Shugrin V.P., Bragin Yu.I. Neftegazovaya gidrogeologiya [Petroleum hydrogeology]. Moscow: RGU Nefti i Gaza im. I.M. Gubkina. 2001. 264 p. In Russ.
11. Korobov A.D., Korobova L.A. Lavinoobraznaya generatsiya petrogennoi vody v tektonicheski aktivizirovannom riftogennom sedimentatsionnom basseine — dvizhushchaya sila gidrotermal’nogo protsessa i migratsii uglevodorodov [Avalanching generation of petrogenic water in tectonically activated sedimentary riftogenic basin as a factor of hydrothermal process and hydrocarbon migration]. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdenii. 2015;(12):34–43. In Russ.
12. Trofimuk A.A., Cherskii N.V., Tsarev V.P. et al. Seismotektonicheskie protsessy — faktor vyzyvayushchii preobrazovanie organicheskogo veshchestva (OV) osadochnykh porod [Seismotectonic processes: factor that causes transformation of the Organic Matter (OM) in sedimentary rocks]. Dokl. ANSSSR. 1983;271(6):1460–1464. In Russ.
13. Amurskii G.I., Bochkarev A.V., Solov’ev N.N. Tektonodinamicheskaya model’ neftegazoobrazovaniya [Tectonodynamic model of oil and gas generation]. Sovetskaya geologiya. 1985;(7):3–13.
14. Korobov A.D., Korobova L.A. Neftegazoperspektivnyi riftogenno-osadochnyi formatsionnyi kompleks kak otrazhenie gidrotermal’nykh protsessov v porodakh fundamenta i chekhla [Oil and gas prospective rift-sedimentary formation complex as reflection of hydrothermal processes in basement of cover rocks]. Geologiya nefti i gaza. 2011;(3):15–24. In Russ.
15. Korobov A.D., Korobova L.A., Kinyaeva S.I. Priroda zhil’nykh kollektorov uglevodorodov fundamenta Shaimskogo raiona (Zapadno-Sibirskaya plita) [The nature of vein hydrocarbon reservoirs in the Basement of Shaimsky region (West Siberian Plate).]. Otechestvennaya geologiya. 2005;(4):3–9. In Russ.
16. Lukin A.E., Lugovaya I.P., Zagnitko O.N. Priroda paleogeotermicheskikh kriteriev neftegazonosnostei [Nature of paleogeothermal criteria of oil and gas occurrence]. Izvestiya ANSSSR, Ser. geol. 1989;(4):113–125. In Russ.
17. Lebedev B.A., Pinskii Eh.M., Mekhanizmy formirovaniya ehpigeneticheskikh mestorozhdenii i ikh ehvolyutsiya v istorii Zemli [Mechanisms of epigenetic fields formation and evolution in the Earth history]. Otechestvennaya geologiya. 2000;(2):13–17. In Russ.
18. Zubkov M.Yu. Tektono-gidrotermal’nye protsessy v yurskikh otlozheniyakh Zapadnoi Sibiri [Tectonic-hydrothermal processes in the West Siberian Jurassic deposits]. Geologiya nefti i gaza. 2017;(1):64–80. In Russ.
19. Hedemann H.A. Die Gebirgstemperaturen in der Bohrung Munsterland-1 und die geotermische Tiefenstufe. Fortschr. Geol. Rheinl. und Westf. 1963;11:(403–418). In Ger.
20. Stanov V.V. Metamorfizm uglei i skorost’ nagreva [Coal metamorphism and rate of heating]. Otechestvennaya geologiya. 1985;(7):13–21. In Russ.
21. Shcheglov A.D. Osnovnye cherty metallogenii zon avtonomnoi aktivizatsii [Zones of autonomous activation: main features of metallogeny]. Zakonomernosti razmeshcheniya poleznykh iskopaemykh. Moscow: Nauka; 1967. V. 8. рр. 95–138. In Russ.
22. Korobov A.D., Korobova L.A. Neftegazonosnye fatsii vtorichnykh kvartsitov i propilitov Zapadno-Sibirskoi plity [Oil and gas bearing facies of secondary quartzites and propylites of West Siberian plate]. Geologiya nefti i gaza. 2013;(1):23–32. In Russ.
23. Shaldybin M.V., Wilson M.J., Wilson L., et al. The nature, origin and significance of luminescent layers in the Bazhenov Shale Formation of West Siberia, Russia. Marine and Petroleum Geology. 2019;100:358–375. DOI: 10.1016/j.marpetgeo.2018.11.022.
24. Ernst R.E., Youbi N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology. 2017;478:30–52. DOI: 10.1016/j.palaeo.2017.03.014.
25. Burov Yu.P., Krasil’shchikov A.A, Firsov L.V., Klubov B.A. Vozrast doleritov Sval’barda (po radiologicheskim dannym) [Age of Svalbard dolerites (according to radiological data)]. Leningrad: Geologiya Sval’barda, NIIGA; 1976. pp. 117–126. In Russ.
26. Gavrilov V.P. Geodinamicheskaya model’ neftegazoobrazovanya v litosfere i ee sledstviya [Geodynamic model of oil and gas generation in lithosphere and its implications]. Geologiya nefti i gaza. 1998;(6):2–12. In Russ.
27. Brilling I.A. Vliyanie temperatury i davleniya na fil’tratsionnye svoistva glin [Lithological properties of clay: effect of temperature and pressure]. In: Svyazannaya voda v dispersnykh sistemakh. Moscow: MGU; 1977. V. 4. pp. 130–135. In Russ.
28. Gol’dberg V.M., Skvortsov N.P. Vliyanie temperatury i mineralizatsii podzemnykh vod na pronitsaemost’ glinistykh vodouporov [Subsurface water temperature and salinity: influence on permeability of argillaceous confining beds]. Gidrogeologiya. Inzhenernaya geologiya i stroitel’nye materialy. Moscow: Nauka; 1980. pp. 73–77. In Russ.
29. Balitskii V.S., Balitskaya L.V., Setkova T.V. et al. Vozmozhno li vospolnenie nefti v otrabotannykh mestorozhdeniyakh za schet vzaimodeistviya gidrotermal’nykh rastvorov s vmeshchayushchimi bituminoznymi i uglerodistymi porodami? (Ehksperiment s uchastiem flyuidnykh vklyuchenii) [Is it possible to replenish oil in abandoned fields due to the interaction of hydrothermal solutions with enclosing bituminous and carbonous rocks? (experiment with the participation of fluid inclusions)]. Georesursy. 2020;(S):36–39. DOI: 10.18599/grs.2020.SI.36–39. In Russ.