S.A. Punanova, M.V. Rodkin
Development of shale hydrocarbon resources: geo-environmental risks
DOI 10.31087/0016-7894-2022-1-109-118
Key words: production of shale hydrocarbons; resources; environmental risks; development; induced seismicity; environment pollution; potentially toxic elements.
For citation: Punanova S.A., Rodkin M.V. Development of shale hydrocarbon resources: geo-environmental risks. Geologiya nefti i gaza. 2022;(1):109–118. DOI: 10.31087/0016-7894-2022-1-109-118. In Russ.
Funding: The paper is prepared as a part of execution of the State Order: “Scientific and methodological foundations for prospecting and exploration of oil and gas accumulations associated with megareservoirs of the sedimentary cover” and “Fundamental basis of innovative technologies in the oil and gas industry (fundamental, exploratory and applied research)”.
In recent years, widespread notions about the beginning of the era of shale oil and shale gas, which are based on the large proven amount of unconventional hydrocarbon resources and on the rapid growth of their production, have been widespread. However, the development of resources of carbon-bearing formations is associated with a noticeable increase in geo-environmental risks, in terms of both induced seismicity and environment pollution by potentially toxic elements (PTE). Existing measures to mitigate the risks from the induced seismicity are not optimal. The most dangerous effect of induced seismicity often more integral, more time-delayed and more distant from injection wells than we mean in the seismic hazard mitigation standards used. In addition to accounting for the hazards of induced seismicity, it is necessary to monitor the contents of PTE in shale formations, in hydrocarbons extracted from them, in groundwater, and in the gas component. With inadequate consideration of geo-environmental risks, production of shale hydrocarbons runs the risk of being unprofitable and even dangerous.
Svetlana A. Punanova ORCiD
Doсtor of Geological and Mineralogical Sciences,
Head Scientist Researcher
Oil and Gas Research Institute Russian Academy of Sciences (OGRI RAS),
3, ul. Gubkina, Moscow 119333, Russia.
e-mail: punanova@mail.ru
Mikhail V. Rodkin ORCiD
Doctor of Physical and Mathematical Sciences,
Chief Researcher, Laboratory Chief
Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS,
84/32, ul. Profsoyuznaya, Moscow, 117485, Russia
e-mail: rodkin@mitp.ru
1. Cost of oil production by country. KNOEMA. Available at: https://knoema.ru/vyronoe/cost-of-oil-production-by-country. (accessed 25.11.2020).
2. Varlamov A.I., Mel’nikov P.N., Poroskun V.I., Fortunatova N.K., Petersil’e V.I., Iutina M.M., Dakhnova M.V., Vitsenovskii M.Yu., Kanev A.S., Soboleva E.N., Shalomeenko A.V. Unconventional oil reservoirs in high-carbon carbonate-siliceous Domanik formations, Volga-Urals Province: results of studies and future development trends. Geologia nefti i gaza. 2020;(6):33–52. DOI: 10.31087/0016-7894-2020-6-33-52. In Russ.
3. Bashkatova A. Slantsevaya otrasl’ SShA vykhodit na samoobespechenie [The US shale industry becomes self-sufficient]. YKTIMES.RU. Available at: http://www.yktimes.ru/novosti/slantsevaya-otrasl-ssha-vyihodit-na-samoobespechenie/ (accessed 10.11.2020). In Russ.
4. Adushkin V.V., Rodionov V.N., Turuntaev S.B., Yudin A.E. Seismichnost’ mestorozhdenii uglevodorodov [Seismicity of hydrocarbon fields]. Neftegazovoe obozrenie. 2000;(1):4–15. In Russ.
5. Van Thienen-Visser K., Breunese J.N. Induced seismicity of the Groningen gas field: History and recent developments. The Leading Edge. 2015;34(6):664–671. DOI: https://doi.org/10.1190/tle34060664.1.
6. Groningen gazovoe mestorozhdenie [Groningen gas field]. NEFTEGAZ.RU. Available at: https://neftegaz.ru/tech_library/view/4831-Groningen-gazovoe-mestorozhenie. (accessed 10.11.2020). In Russ.
7. Barsukov Yu. Evropa proshchaetsya s gazovoi legendoi [Europe says goodbye to gas legend]. Setevoe izdanie “Kommersant” № 54. 2018. Available at: https://www.kommersant.ru/doc/3587562. (accessed: 25.11.2020). In Russ.
8. Rodkin M.V., Rukavishnikova T.A. Induced seismicity: a serious threat for shale oil production. 2018;22(3). Available at: http://oilgasjournal.ru/issue_22/rodkin.html. (accessed 08.11.2019.) In Russ.
9. Krupnick A., Echarte I. Induced Seismicity Impacts of Unconventional Oil and Gas Development. RFF Report. 2017. Goebel, T.H.W. 30 p. Available at: http://www.ourenergypolicy.org/wp-content/uploads/2017/07/RFF-Rpt-ShaleReviews_Seismicity_0.pdf (accessed 08.11.2019).
10. Van der Baan K., Calixto F.J. Human-induced seismicity and large-scale hydrocarbon production in the USA and Canada // Geochemistry, Geophysics, Geosystems. – 2017. – V. 18. – № 7. – Р. 2467–2485. DOI: 10.1002/2017GC006915
11. Ogata Y. Space–time point process models for earthquake occurrence. Ann. Inst. Statis. Math. 1998;50:379–402.
12. Vorobieva I., Shebalin P., Narteau C. Condition of Occurrence of Large Man-Made Earthquakes in the Zone of Oil Production, Oklahoma. Izvestiya, Physics of the Solid Earth. 2020;56(6):911–919. DOI: 10.1134/S10693513200601309.
13. Hornbach M.J., Jones M., Scales M., DeShon H.R., Magnani B., Frohlich C., Stump B., Hayward C., Layton M. Ellenburger wastewater injection and seismicity in North Texas. Physics of the Earth and Planetary Interiors.2016;261(A):54–68. DOI: 10.1016/j.pepi.2016.06.012.
14. Goebel T.H.W., Hauksson E., Aminzadeh F., Ampuero J.-P. An objective method for the assessment of fluid injection induced seismicity and application to tectonically active regions in central California. Journal of Geophysical Research: Solid Earth. 2015;120(10):7013–7032. DOI: 10.1002/2015JB011895.
15. Punanova S.A., Shpirt M.Ya. Ecological Consequences of the Development of Shale Formations Containing Toxic Elements // Solid Fuel Chemistry. – 2018. – V. 52. – № 6. – Р. 396–405. DOI:10.3103/S0361521918060095
16. Dolson J., He Zh., Horn B.W. Advances and perspectives on stratigraphic trap exploration – making the subtle trap obvious. Search and Discovery. 2018. Available at: http://www.searchanddiscovery.com/documents/2018/60054dolson/ndx_dolson.pdf. (accessed 25.11.2020).
17. Ulmiskek G.F. , Shalomeyenko A.V., Holton J.E., Dakhnova M.V. Unconventional oil reservoirs in the Domanik formation of the Orenburg region. Geologia nefti i gaza. 2017;(5):67–77. In Russ.
18. Punanova S. Trace element composition of shale formations. 29-th International Meeting on Organic Geochemistry (EAGE-IMOG) (September 2019). Gothenburg, Sweden. All Abstracts. pр. 495–496.
19. Mukhametshin R.Z., Punanova S.A. Non-traditional sources of hydrocarbon raw material: geochemical features and aspects of development. Neftyanoe khozyaistvo. 2012;(3):28–32. In Russ.
20. Abarghan A., Gentzis T., Liu B., Khatibi S., Bubach B., Ostadhassan M. Preliminary Investigation of the Effects of Thermal Maturity on Redox-Sensitive Trace Metal Concentration in the Bakken Source Rock, North Dakota, USA. ACS Omega. 2020;5(13):7135–7148. DOI:10.1021/acsomega.9b03467.
21. Lauer N.E., Harkness J.S., Vengosh A. Brine Spills Associated with Unconventional Oil Development in North Dakota. Environmental Science & Technology. 2016;(13):1–9. Available at: https://pubs.acs.org/doi/abs/10.1021/acs.est.5b06349 (accessed 25.11.2020). DOI:10.1021/acs.est.5b06349.
22. Ter Heege J. How Sweet is European Shale? A Story about the Uncertain Potential, Problematic Recovery and Public Concerns of Shale Gas Development in Europe. 2018 AAPG Middle East Region, Shale Gas Evolution Symposium, Manama, Bahrain, (December 11–13, 2018). 2019. Available at: https://www.searchanddiscovery.com/pdfz/documents/2019/70381heege/ndx_heege.pdf.html (accessed 25.11.2020). DOI:10.1306/70381Heege2019.