T.V. Matveeva, E.A. Logvina, O.V. Nazarova
Submarine gas hydrates: methods and results of resource assessment
DOI 10.47148/0016-7894-2024-3-81-96
Key words: unconventional resources; gas hydrates; gas hydrate accumulations; gas hydrate resource assessment; local, global, and regional gas hydrate resource assessment; Arctic gas hydrates.
For citation: Matveeva T.V., Logvina E.A., Nazarova O.V. Submarine gas hydrates: methods and results of resource assessment. Geologiya nefti i gaza. 2024;(3):81–96. DOI: 10.47148/0016-7894-2024-3-81-96. In Russ.
The article is devoted to the problem of resource assessment of unconventional hydrocarbon – hydrocarbon gas hydrates. The methodological aspects of quantitative resource assessment of submarine gas hydrates of various ranks — global, regional, and local — are considered. An overview of the methods and approaches used for quantitative assessment in the countries with leading gas hydrate resources and their results are presented. Global estimates of methane content in gas hydrates carried out using different methods vary in the range of 2 ∙ 1014 to 7.6 ∙ 1018 m3. The average density of gas hydrate resources per unit area in individual underwater accumulations is estimated at 1.2 ∙ 109 m3/km2. The specific content of hydrate gas in key gas-bearing regions varies significantly, averaging 4.4 ∙ 109 m3/km2. The resource density in these regions is most likely overestimated by two orders. Based on the patterns of reserves density distribution in the series from megaprovince to hydrocarbon deposits, a quantitative assessment of gas hydrates predicted resources in the Russian Arctic
seas was carried out. The amount of methane in gas hydrates of the Arctic seas as on 01.01.2020 is estimated at 5.3 to 79.3 trillion m3 with an average of 26.4 trillion m3. It has been established that even the average predicted amount of methane in hydrates increases the initial total free gas resources of the Russian Arctic seas by 28%, and the minimum and maximum — by 6 and 83%, respectively this fact confirms the considerable resource potential of submarine gas hydrates.
Tatiana V. Matveeva ORCiD
Candidate of Geological and Mineralogical Sciences,
Head of Sector
VNIIOkeangeologia,
1, Angliiskii prospekt, 190121, Russia
e-mail: t.matveeva@vniio.ru
Elizaveta А. Logvina ORCiD
Candidate of Geological and Mineralogical Sciences,
Senior Researcher
VNIIOkeangeologia,
1, Angliiskii prospekt, 190121, Russia
Olga V. Nazarova
Lead Engineer
VNIIOkeangeologia,
1, Angliiskii prospekt, 190121, Russia
e-mail: o.nazarova@vniio.ru
1. Equinor 2023 Oil and gas reserves report. Stavanger, Norway: Equinor ASA; 2023 29 p.
2. Yamamoto K. Methane hydrate offshore production test in the Eastern Nankai Trough: a milestone on the path to real energy resource. In: Proceedings of 8th International Conference on Gas Hydrates. Beijing: ICGH8 Organization; 2014.
3. Zhou S, Li Q, Lv X, Fu Q, Zhu J. Key issues in development of offshore natural gas hydrate. Frontiers in Energy. 2020;14:433–442. DOI: 10.1007/s11708-020-0684-1
4. Wei N, Pei J, Zhao J, Zhang L, Zhou Sh, Luo P, Li H, Wu J. A state-of-the-art review and prospect of gas hydrate reservoir drilling techniques. Frontiers in Earth Science. 2022;2:1–23. DOI: 10.3389/feart.2022.997337
5. Matveeva T.V., Logvina E.A. Sovremennye tendencii v oblasti eksperimental’noj razrabotki gazogidratnyh zalezhej [Current trends in experimental development of gas hydrate accumulations]. Gazovaya promyshlennost’. Specvypusk. 2012;676:88—94. In Russ.
6. Beaudoin Y.C., Dallimore S.R., Boswell R. (eds). Frozen Heat: A UNEP Global Outlook on Methane Gas Hydrates.Volume 2. United Nations Environment Programme, GRID-Arendal; 2014. 95 p.
7. Solov’ev V.A. Global’nye otsenki kolichestva gaza v submarinnykh skopleniyakh gazovykh gidratov [Global estimates of gas amount in subsea gas hydrate accumulations]. Geologiya i Geofizika.,2002;43(7);648–661. In Russ.
8. Skorobogatov V.A., Perlova E.V. Potential resources of non-traditional gas of subsoil resources of Russia (band and shelf) and its industrial development prospects by 2050. Geologiya nefti i gaza. 2014;5:48—57. In Russ.
9. Matveeva T.V., Semenova A.A., Shchur N.A., Logvina E.A., Nazarova O.V. Prospects of gas hydrate presence in the Chukchi Sea. Journal of Mining Institute. 2017; 226:387–396. DOI: 10.25515/PMI.2017.4.387
10. Matveeva T.V. Obrazovanie gidratov uglevodorodnykh gazov v subakval’nykh obstanovkakh [Formation of hydrocarbon gas hydrates in subaqueous settings.]. In: L.I. Lobkovskii, G.A. Cherkashev eds. Mirovoi ocean V. 3: Tverdye poleznye iskopaemye i gazovye gidraty v okeane. Moscow: Nauchnyi mir; 2018. pp. 586–697. In Russ.
11. Pang X. Evaluation of the Global Potential Resource of the Natural Gas Hydrate. In: Quantitative Evaluation of the Whole Petroleum System. Singapore : Springer, 2023. pp. 413–454. DOI: 10.1007/978-981-99-0325-2_12.
12. Johnson A.H. Global Resource Potential of Gas Hydrate — a new calculation. NETL Methane Hydrates R&D Program Newsletter. 2011;11(2):1–4.
13. Piñero E., Marquardt M., Hensen C., Haeckel M., Wallmann K. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences. 2013;10(2):959–975. DOI:10.5194/bg-10-959-2013.
14. Klauda J.B., Sandler S.I. Global Distribution of Methane Hydrate in Ocean Sediment. Energy Fuel. 2005;19(2):459–470. DOI: 10.1021/ef049798o.
15. Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences. 2009;106(49):20596–20601. DOI: 10.1073/pnas.0800885105.
16. Burwicz E., Rupke L.H., Wallmann K. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reactiontransport modeling and a novel parameterization of Holocene sedimentation. Geochimica et Cosmochimica Acta. 2011;75(16):4562–4576. DOI: 10.1016/j.gca.2011.05.029.
17. Wallmann K., Pinero E., Burwicz E., Haeckel M., Hensen C., Dale A., Ruepke L. The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach. Energies. 2012;5(7):2449–2498. DOI:10.3390/en5072449.
18. Yakuceni V.P. Gas hydrates — unconventional gas sources, their formation, properties, distribution and geological resources. Neftegazovaya geologiya. Teoriya i praktika. 2013;8(4). Available at: http://www.ngtp/ru/rub/9/50_2013/pdf (accessed). In Russ.
19. Davenport J., Wayth N.et al. BP Energy Institute Statistical Review of World Energy. London : Energy Institute; 2023. 61 p.
20. OPEC Annual Statistical Bulletin, 58th Ed. 2023. 96 p. Available at: https://asb.opec.org/ (accessed)
21. Kenneth J. Bird et al. Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle. United States Geological Survey. 2008. Available at: https://pubs.usgs.gov/fs/2008/3049/fs2008-3049.pdf (accessed).
22. Matveeva T.V., Solov’ev V.A. Geologicheskij kontrol’ skopleniya gazovyh gidratov na hrebte Blejk Auter, Severnaya Atlantika (po materialam glubokovodnogo bureniya) []. Geologiya i geofizika. 2002;43(7):662—671
23. Collett T.S. Gas hydrate resources of the United States In: National assessment of United States oil and gas resources on CD-ROM. In: Gautier D.L., ed. U.S. Geological Survey Digital Data Series DDS-30, CD-ROMS. – 1995.
24. Krason J. Gas hydrates in the context of basin analysis. In: Proc.of the Internat. Sympos. Methane Hydrates: Resources in the Next Future? INOC-TRC; 1998, pp. 27-40.
25. Frye M., Shedd W, Schuenemeyer J. Gas Hydrate Resource Assessment Atlantic Outer Continental Shelf In: U.S. Department of the Interior Bureau of Ocean Energy Management Resource Evaluation Division Edinburgh, Scotland. 2013. 57 p.
26. Collett T.S., Boswell R. Resource and hazard implications of gas hydrates in the Northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg II Drilling Expedition. Journal of Marine and Petroleum Geology. 2012;34(1):1–3. DOI: 10.1016/j.marpetgeo. 2012.01.002.
27. Sum A.K. Natural gas in gas hydrates a potential unconventional resource for the future energy landscape. In: Hill Briefing on «Road to the New Energy Economy: Natural Gas» (Washington, USA, 14 July 2010). – Washington, USA; 2010. 28. Milkov A.M., Sassen R. Gas hydrate resource potential in the northwestern Gulf of Mexico. AAPG Bulletin. 2000. Available at: https://www.searchanddiscovery.com/documents/abstracts/2004hedberg_vancouver/extended/milkov/milkov.htm (accessed)
29. Klar А., Janicki G., Minshull T.A. Gas hydrate technology: state of the art and future possibilities for Europe. Technical Report. 2017. 61 p. DOI: 10.13140/RG.2.2.29719.06561.
30. Pibo Su, Jinqiang Liang, Jun Peng, Wei Zhang, Jianhua Xu. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China sea. Journal of Asian Earth Sciences. 2018;168:57–76. DOI: 10.1016/j.jseaes.2018.08.001.
31. Bochkarev A.V., Smirnov Y.Y., Matveeva, T.V. Heat Flow at the Eurasian Margin: A Case Study for Estimation of Gas Hydrate Stability. Geotectonics. 2023;57(1):136–152. DOI: 10.1134/S0016852123070026
32. Shchur A.A., Matveeva T.V., Bochkarev A.V. Geographic Information System for the forecast mapping of gas hydrate-bearing areas. Geologiya nefti i gaza. 2021;(3):85–94. DOI: 10.31087/0016-7894-2021-3-85-94. In Russ.