K.O. Sobornov
Symbiosis of ring inversion structures and salt cryptodiapirs in the north of the West Siberian basin
DOI 10.47148/0016-7894-2024-6-15-30
Key words: West Siberian basin; ring inversion structures; salt cryptodiapirs; geodynamics; oil and gas fields; seismic surveying.
For citation: Sobornov K.O. Symbiosis of ring inversion structures and salt cryptodiapirs in the north of the West Siberian basin. Geologiya nefti i gaza. 2024;(6):15–30. DOI: 10.47148/0016-7894-2024-6-15-30. In Russ.
Acknowledgments. The author is deeply indebted to V.A. Baldin (AO Bashneftegeofizika, Ufa, Russia), I.P. Korotkov (GDS, Moscow, Russia), A.M. Nikishin (MSU, Moscow, Russia) for fruitful discussions concerning various aspects of seismic interpretation and geology of Western Siberia. The author is also appreciating Severo-Uralskaya Oil and Gas Company LLC for technical support of the research.
Ring inversion structures are a phenomenon of geological structure of the northern regions of the West Siberian Basin. They include synclines in Jurassic sediments overlain by subtle uplifts in Cretaceous sediments. Interpretation of seismic data shows that these disharmonic structures probably resulted from salt diapir growth in Paleozoic sediments. The symbiosis of ring inversion structures and cryptodiapirs was determined by the staged growth of salt structures, which is consistent with the geodynamic context of the West Siberian Basin development. The high-relief synclinal elements of the inversion structures, which are composed predominantly of Jurassic deposits, were probably formed under conditions of crestal stretching above the rapidly growing cryptodiapirs. The subsequent formation of swells composed of Cretaceous deposits is interpreted as the result of a new phase of salt diapir’ moderate growth in the Late Cenozoic. This phase of limited diapir growth modified the synclines but did not resulted in their elimination. The confinement of ring inversion structures to cryptodiapirs in the Paleozoic sediments was favorable for the formation of large multiplay oil and gas fields. Pre-Jurassic deposits could be a source of additional hydrocarbon amount for accumulations in the Jurassic-Cretaceous sedimentary cover.
Konstantin O. Sobornov ORCiD
Doctor of Geological and Mineralogical Sciences,
Chief researcher
All-Russian Research
Geological Oil institute,
36, sh. Entuziastov, Moscow, 105118, Russia
e-mail: sobornov@vnigni.ru
1. Brekhuntsov A.M., Monastyrev B.V., Nesterov I.I., Skorobogatov V.A. Neftegazovaya geologiya Zapadno-Sibirskoi Arktiki [Oil and Gas Geology of the West Siberian Arctic]. Tyumen’: MNP Geodata, 2020. 464 p.
2. Borodkin V.N., Smirnov O.A., Lukashov A.V., Plavnik A.G., Teplyakov A.A. Sedimentological model of the cretaceous strata of the Yamal peninsula on the basis of composite geological and geophysical investigations. Neftegazovaya geologiya. Teoriya i praktika. 2022;17(1). – Available at: http://www.ngtp.ru/rub/2022/6_2022.html (accessed: 05.06.2024).
3. Geology and mineral resources of Russia. V. 2. West Siberia. In: A.E. Kontorovich, V.S. Surkov, eds. St. Petersburg: VSEGEI; 2000. 477 p.
4. Shein V.S. Geologiya i neftegazonosnost’ Rossii [Geology and petroleum potential of Russia]. Moscow: VNIGNI; 2006. 774 p. In Russ.
5. Adiev Ya.R., Gataullin R.M. Kol’tsevye struktury — «gazovye truby» severa Zapadnoi Sibiri [Ring structures — “gas pipes” of the north of Western Siberia]. Geofizika. 2003. Spetsial’nyi vypusk k 70-letiyu «Bashneftegeofiziki». 23–33 pp.
6. Baldin V.A., Munasypov N.Z., Pisetskii V.B. Istoriya izucheniya inversionnykh kol’tsevykh struktur v Zapadnoi Sibiri [History of the study of inversion ring structures in Western Siberia]. Geofizika. 2023;(3):13–20. DOI: 10.34926/geo.2023.59.93.002.
7. Baldin V.A., Munasypov N.Z., Pisetskii V.B. Structural features and oil and gas potential of mesozoic inversion ring structures in the North of Western Siberia. Geofizika. 2023;(3):21–29. DOI: 10.34926/geo.2023.61.96.003.
8. Bembel’ R.M., Bembel’ M.R., Megerya V.M. Geo-soliton model of hydrocarbon deposits generation in the north of Western Siberia. Geofizika. 2014;(6):9–17.
9. Borodkin V.N., Kislukhin V.I., Nesterov I.I. (ml.), Fedorov Yu.N. Inversionnye kol’tsevye struktury kak odin iz kriteriev lokal’nogo prognoza neftegazonosnosti [Inversion ring structures as one of the criteria for local forecast of oil and gas potential]. Gornye vedomosti. 2006;(10):24–39.
10. Girshgorn L.Sh. Disgarmonichnye podnyatiya v osadochnom chekhle severa Zapadno-Sibirskoi plity [Disharmonic uplifts in the sedimentary cover of the north of the West Siberian plate]. Sovetskaya geologiya. 1987;(4):63–71.
11. Zonenshain L.P., Kuz’min M.I., Natapov L.M. Tektonika litosfernykh plit territorii SSSR [Lithosphere plate tectonics: USSR territory]. Moscow: Nedra; 1990. 666 p. In Russ.
12. Sobornov K.O., Yakubchuk A. Plate-tectonic development and formation of Northern Euroasia basins. Geologiya nefti i gaza. 2006;(2):10–18.
13. Nikishin A.M., Sobornov K.O., Prokop’ev A.V., Frolov S.V. Vendian to phanerozoic tectonic history of the Siberian platform region. Vestnik Moskovskogo universiteta. Seriya 4. – Geologiya. 2010;(1):3–16.
14. Gogonenkov G.N., Kashik A.S., Timurziev A.I. Horizontal displacements of West Siberia’s basement. Geologiya nefti i gaza. 2007;(3):3–11.
15. Astakhov V.I. Quaternary Glaciotectonics of the Ural-Siberian North. Geologiya i geofizika. 2019;(12):1692—1708. DOI: 10.15372/RGG2019136
16. Milkov A. Methanogenic biodegradation of petroleum in the West Siberian Basin (Russia): Significance for formation of giant Cenomanian gas pools. AAPG Bull. 2010;94(10): 1485–1541.
17. Kontorovich V.A., Fillipov Yu.F. Analiz geologo-geofizicheskikh dannykh s tsel’yu utochneniya geologicheskogo stroeniya, otsenki perspektivn neftegazonosnosti i vyrabotki rekomendatsii po litsenzirovaniyu nedr domezozoiskikh kompleksov v Pred”eniseiskoi zone Zapadno-Sibirskoi ravniny [Analysis of geological and geophysical data for the purpose of clarifying the geological structure, assessing the potential for oil and gas potential and developing recommendations for licensing the subsoil of pre-Mesozoic complexes in the Pre-Yenisei zone of the West Siberian Plain]. Novosibirsk: IGNG SO RAN, 2004. 289 p.
18. Kornelyuk Yu.I., Kochetkov T.P., Emel’yantsev T.M. Nordvik-Khatangskii neftenosnyi raion (kratkii ocherk geologii i neftenosnosti) [Nordvik-Khatanga oil-bearing region (a brief outline of geology and oil potential)]. Nedra Arktiki. Leningrad : Izd-vo Glavsevmorputi, 1946. 73 p.
19.Sobornov K.O. Structure of salt diapirs of the West Siberian basin and Yenisei-Khatanga trough according to seismic data. Geotectonics. 2024;58(5): In press.
20. Belenitskaya G.A. Salts of the earth: tectonic, kinematic and magmatic aspects of geological history. Moscow: Geos, 2020. 605 s
21. Jackson M.P.A., Hudec M.R. Salt tectonics: principles and practice. Cambridge University Press; 2017. 498 p. DOI:10.1017/9781139003988.
22. Broughton P.L. Breccia pipe and sinkhole linked fluidized beds and debris flows in the Athabasca Oil Sands: dynamics of evaporite karst collapse-induced fault block collisions. Bulletin of Canadian Petroleum Geology. 2017;65(1):200–234. DOI: 10.2113/gscpgbull.65.1.200.
23. Sun Q., Cartwright J., Wu S., Chen D. 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse. Marine Geology. 2013;(337):171–181. DOI: 10.1016/j.margeo.2013.03.002.
24. Alipour M., Petroleum systems of the Iranian Zagros Fold and Thrust Belt. Results in Earth Sciences. 2024;(2):100027. DOI: 10.1016/j.rines.2024.100027.
25. Kharakhinov V.V., Kulishkin N.M., Shlenkin S.I. The Messoyakhsky threshold as unique oil and gas geological object in the north of Siberia. Oil and gas geology. 2013;(5):34–48.