D.F. Kalinin, Yu.A. Yanovskaya, A.S. Dolgal
Statistical methods for potential fields interpretation: studies of structural and tectonic architecture of oil and gas promising territories
DOI 10.31087/0016-7894-2021-2-27-36
Key words: factors of oil and gas occurrence; geopotential fields; statistical profiling; dispersion section; mode function; structural element; fault; basement; sedimentary cover; interpretation section.
For citation: Kalinin D.F., Yanovskaya Yu.A., Dolgal A.S. Statistical methods for potential fields interpretation: studies of structural and tectonic architecture of oil and gas promising territories. Geologiya nefti i gaza.2021;(2):27–36. DOI: 10.31087/0016-7894-2021-2-27-36. In Russ.
Funding: This work was supported by RFBR grant No. 19-05-00654 А.
The authors discuss capabilities of computer technologies for gravity and magnetic fields interpretation, which allow identifying and delineating elements of deep structural and tectonic architecture in oil and gas promising territories. An option of integrated processing of geophysical data based on complementary mathematical methods of statistical profiling and empirical mode decomposition is proposed. An example of integrated analysis of geological and geophysical data defining the possible relationships between geological structure of the basement and structural features of sedimentary cover inherited from it is presented. The results of revealing of hidden geopotential fields’ anomalies being associated with possible hydrocarbon migration and concentration within the local areas of interpretation section are demonstrated.
Dmitrii F. Kalinin ORCiD
Doctor of of Technical Sciences,
Group Supervisor
Geologorazvedka,
korp. 2, lit. A, ul. Fayansovaya, St. Petersburg, 192019, Russia
e-mail: kalinindf@rusgeology.ru
Yuliya A. Yanovskaya
Leading Geophysicist
Geologorazvedka,
korp. 2, lit. A, ul. Fayansovaya, St. Petersburg, 192019, Russia
e-mail: yanovskaya-yuliya61@yandex.ru
Aleksandr S. Dolgal’ ORCiD
Doctor of Physics and Mathematics,
Leading Researcher
Mining Institute, Ural Branch
of the Russian Academy of Sciences,
78a, ul. Sibirskaya, Perm’, 614007, Russia
e-mail: dolgal@mi-perm.ru
1. Metodicheskie rekomendatsii po geofizicheskomu obespecheniyu geologos”emochnykh rabot m-ba 1:200 000 [Recommended practices for geophysical support of 1:200 000 geological surveying] In: M.N. Stolpnera ed. St. Petersburg: VIRG-Rudgeofizika; 2000. 240 p. In Russ.
2. Kochetkov O.S., Alisievich L.N., Gaideek V.I., Yudin V.M. O putyakh formirovaniya mestorozhdenii nefti i gaza [Ways of oil and gas field formation]. Geologiya nefti i gaza. 2000;(5):44–49. In Russ.
3. Petrov A.V., Trusov A.N. Komp’yuternaya tekhnologiya statisticheskogo i spektral’no-korrelyatsionnogo analiza trekhmernoi geoinformatsii COSCAD-3D [COSCAD-3D computer technology for statistical, and spectral and correlation analysis in 3D geoinformation]. Geofizika. 2000;(4):29–33. In Russ.
4. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N., Tung C.C., Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. 1998;1971(454):903–995. DOI: 10.1098/rspa.1998.0193.
5. Hassan H.H., John W.P. Empirical Mode Decomposition (EMD) of potential field data: airborne gravity data as an example. CSEG Recorder (Canadian Society of Exploration Geophysicists) 2008;33(1). Available at: https://csegrecorder.com/articles/view/empirical-mode-decompositionemd-of-potential-field-data (accessed 27.11.2020).
6. Dolgal’ A.S., Khristenko L.A. Primenenie empiricheskoi modovoi dekompozitsii pri obrabotke geofizicheskikh dannykh [Empirical mode decomposition in geophysical data processing]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2017;328(1):100–108. In Russ.
7. Serkerov S.A. Korrelyatsionnye metody analiza v gravirazvedke i magnitorazvedke [Correlation methods of analysis in gravimetry and magnetometry]. Moscow: Nedra; 1986. – 247 p. In Russ.
8. Dolgal’ A.S., Voroshilov V.A. Adaptivnyi algoritm razlozheniya geofizicheskikh polei na sostavlyayushchie [Adaptive algorithm of geophysical fields resolution into components]. In: Geologiya i poleznye iskopaemye Zapadnogo Urala: sbornik nauchnykh statei In: P.A. Krasil’nikov, ed., Perm’; 2020. Issue 3(40). 321 p. Available at: https://www.psu.ru/files/docs/science/books/sborniki/geologiya-i-poleznye-iskopaemye-zapadnogourala-40.pdf (accessed 27.11.2020).
9. Chen Y., Zhao B., Huang J., Zhang L. Application of BEMD in Extraction of Regional and Local Gravity Anomalies Reflecting Geological Structures Associated with Mineral Resources. In: Gravity — Geoscience Applications, Industrial Technology and Quantum Aspect. Available at: https://www.intechopen.com/books/gravity-geoscience-applications-industrial-technology-and-quantum-aspect/application-of-bemd-in-extraction-ofregional-and-local-gravity-anomalies-reflecting-geological-stru (accessed 03.12.2020). DOI: 10.5772/intechopen.71222.
10. Kalinin D.F., Yanovskaya Y.A., Dolgal A.S. Results of the profile complex interpretation of geopotential fields through empirical mode decomposition (EMD) aimed at oil-and-gas occurrence prospects assessment. The Russian geophysics journal. 2019;(1):2–12. In Russ.
11. Pustozerov M.G. Elementy glubinnogo geologicheskogo stroeniya i ikh svyaz’ s poleznymi iskopaemymi na yugo-zapade Sibirskoi platform [Elements of deep geological structure and their association with minerals in south-west of Siberian Platform]. Georesursy. 2006;(1):37–39. In Russ.
12. Yarmolyuk V.V., Nikiforov A.V., Kozlovsky A.M., Kudryashova E.A. Late Mesozoic East Asian magmatic province: structure, magmatic signature, formation conditions. Geotectonics. 2019;(4):60–77. DOI: 10.31857/S0016-853X2019360-77. In Russ.
13. Migurskii A.V. Krupnye ostantsovye podnyatiya fundamenta na Nepsko-Botuobinskoi anteklize (Sibirskaya platforma) i neftegazonosnost’ osadochnogo chekhla nad nimi. In: Nedropol’zovanie. Gornoe delo. Napravleniya i tekhnologii poiska, razvedki i razrabotki mestorozhdenii poleznykh iskopaemykh: sb. mat-lov Mezhdunarodnoi nauchnoi konf. V. 1. Novosibirsk: SGUGiT; 2017. In Russ.
14. Kashirtsev V.A., Parfenova T.M., Moiseev S.A., Chernykh A.V., Novikov D.A., Burshtein L.M., Dolzhenko K.V., Rogov V.I., Mel’nik D.S., Zueva I.N., Chalaya O.N. The Sukhana Sedimentary Basin, Siberian Platform: Source Rock Characterization and Direct Evidence of Oil and Gas Presence. Russian Geology and Geophysics. 2019;60(10):1175–1187. DOI:10.15372/RGG2019119.
15. Korobkov I.G., Protsenko E.V., Korobkova A.I. Structures of the sedimentary cover of highly productive kimberlit fields Vilyuy-Marha minerogenic zone (Yakut diamondiferous province). Proceedings of Voronezh State University. Series: Geology. 2015;(1):22–28. In Russ.
Section: Geophysical surveys