S.A. Kaplan, M.Ya. Finkel’shtein, M.Yu. Smirnov, V.A. Spiridonov
Methodology for geophysical methods integration in regional stage of geological exploration
DOI 10.31087/0016-7894-2021-3-111-121
Key words: integration; regional stage of research; seismic exploration; gravimetry; gravity field corrections; three-dimensional model.
For citation: Kaplan S.A., Finkel’shtein M.Ya., Smirnov M.Yu., Spiridonov V.A. Methodology for geophysical methods integration in regional stage of geological exploration. Geologiya nefti i gaza. 2021;(3):111–121. DOI: 10.31087/0016-7894-2021-3-111-121. In Russ.
The article discusses approaches and methods for integrating seismic and gravimetric data in regional oil and gas operations. The informational basis of the regional stage is described and the necessity of integrating information coming from different methods is substantiated. The difficulties arising from the use of gravimetry data, which lead to the need for a twostage technique for its use, are explained. In the first stage, based on the geometry of deep seismic boundaries, a large-scale model of the sedimentary cover and the earth’s crust is constructed, which ensures the reduction of the gravity field to a depth in the vicinity of the crystalline basement. In the second stage, the data are integrated within the sedimentary cover based on the reservoir depth-velocity model, taking into account seismic stratigraphic and seismic facies interpretation of seismic sections. The use of gravimetric information makes it possible to more reasonably interpolate and extrapolate structural surfaces in the space between seismic lines, as well as predict intrusive bodies position and shape. The result of a two-stage integration of seismic and gravimetry data is represented by 3D thick-layered model described by matched geometric, velocity, and density characteristics. The methodology is based on the technological capabilities of the INTEGRO Geographic Information System. An example of the application of the described technique is presented.
Samuil A. Kaplan ORCiD
Candidate of Technical Sciences,
Head of Department
All-Russian Research
Geological Oil Institute,
8, Varshavskoe shosse, Moscow, 117105, Russia
e-mail: kaplansam@rambler.ru
Мikhail Ya. Finkel’shtein ORCiD
Doctor of Technical Sciences,
Head of Department,
Senior Researcher
All-Russian Research
Geological Oil Institute,
8, Varshavskoe shosse, Moscow, 117105, Russia
e-mail: misha@geosys.ru
Maxim Yu. Smirnov ORCiD
Candidate of Geological and Mineralogical Sciences,
Deputy Director General
All-Russian Research
Geological Oil Institute,
36, Shosse Entuziastov, Moscow, 105118, Russia
e-mail: smirnov@vnigni.ru
Viktor A. Spiridonov ORCiD
Candidate of Technical Sciences, Head of Sector
All-Russian Research
Geological Oil Institute,
8, Varshavskoe shosse, Moscow, 117105, Russia
e-mail: victor@geosys.ru
1. Priezzhev I.I. Postroenie raspredelenii fizicheskikh parametrov sredy po dannym gravirazvedki, magnitometrii [Calculating distributions of subsurface physical parameters from gravimetry, magnetometry data]. Geofizika. 2005;(3):46–51. In Russ.
2. Kobrunov A.I. Matematicheskie osnovy teorii interpretatsii geofizicheskikh dannykh [Mathematical basis of theory of geophysical data interpretation]. Moscow: TsentRLiTNeftEGaz; 2008. 286 p. In Russ.
3. Babayants P.S., Blokh Yu.I., Trusov A.A. Izuchenie rel’efa poverkhnosti kristallicheskogo fundamenta po dannym magnitorazvedki [Studies of crystalline basement topography using magnetometry data]. Geofizika 2003;(4):37–40. In Russ.
4. Babayants P.S., Blokh Yu.I., Trusov A.A. Izuchenie stroeniya kristallicheskogo osnovaniya platformennykh oblastei po dannym magnitorazvedki i gravirazvedki [Studies of crystalline basement architecture in platform areas using magnetometry and gravimetry data]. Geofizika. 2003;(6):55–58. In Russ.
5. Glogovskii V.M., Grinshpun A.V., Meshbei V.I., Tseitlin M.I. Reshenie obratnoi kinematicheskoi zadachi v sloistoi srede s ispol’zovaniem vzaimnykh tochek [Solving the inverse traveltime problem in layered subsurface using reciprocal method]. Prikladnaya geofizika. 1977;(87):40–46. In Russ.
6. Glogovskii V.M., Meshbei V.I., Tseitlin M.I., Langman S.L. Kinematiko-dinamicheskoe preobrazovanie seismicheskoi zapisi dlya opredeleniya skorostnogo i glubinnogo stroeniya sredy Sbornik dokladov vtorogo nauchnogo seminara stran-chlenov SEHV po neftyanoi geofizike. Tom 1. Seismorazvedka [Kinematic and dynamic transformation of seismic record to determine subsurface structure in depth and
time]. Moscow: TSGEH MNP; 1982. 326–331 p. In Russ.
7. Langman S.L., Silaenkov O.A. Kinematiko-dinamicheskoe preobrazovanie — instrument parametrizatsii volnovogo polya [Kinematic and dynamic transformation as a tool for wavefield parametrization]. In: Geomodel’-2011: mat-ly 13-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii po problemam kompleksnoi interpretatsii geologo-geofizicheskikh dannykh pri geologicheskom modelirovanii mestorozhdenii uglevodorodov (Gelendzhik, 11–15 sentyabrya 2011 g.). Gelendzhik; 2011. In Russ.
8. Vedenyapin O.A., Kaplan S.A., Lebedev E.B., Rok V.E. Metodiki izucheniya slozhnopostroennykh sred geofizicheskimi metodami [Techniques for studies of structurally complicated media using geophysical methods]. In: VNIGNI-65. Lyudi, rezul’taty, i perspektivy. Moscow: VNIGNI; 2018. 259–283 p. In Russ.
9. Spiridonov V.A., Pimanova N.N., Finkel’shtein M.Ya. Tekhnologiya postroeniya 3D plotnostnoi modeli zemnoi kory v GIS INTEGRO [Technology for constructing a 3D density model of the earth’s crust in the INTEGRO GIS]. Geoinformatika. 2020;(4):38–51. DOI: 10.47148/1609-364X-2020-4-38-51. In Russ.
10. Biserkin I.A., Lyubarev I.A., Bol’shakov E.M. 3D modelirovanie strukturnykh kart na baze opornykh poverkhnostei po profil’nym dannym [3D Modeling of structural maps based on supporting surfaces according to profile data]. Geoinformatika. 2020;(1):38–41. In Russ.
11. Gardner G.H.F., Gardner L.W., Gregory A.R. Formation velocity and density — the diagnostic basics for stratigraphic traps Geophysics. 1974;(39):770–849.