A.V. Khramtsova, К.V. Zverev, A.V. Melnikov
Hyperpycnal turbidites: main type of Lower Cretaceous Achimov sandy deposits in Western Siberia
DOI 10.47148/0016-7894-2024-6-45-56
Key words: extrabasinal turbidites; hyperpycnal flows; plant detritus; Achimov Formation; deep-water channels; deepsea fans.
For citation: Khramtsova A.V., Zverev K.V., Melnikov A.V. Hyperpycnal turbidites as the main type of sandy deposits of the Achimov formation of Western Siberia. Geologiya nefti i gaza. 2024;(6):45–56. DOI: 10.47148/0016-7894-2024-6-45-56. In Russ.
Structural features of the Achimov rocks studied from well cores and 3D seismic survey results, are indicative of the fact that most of them were formed by hyperpycnal (extrabasinal) rather than classical (intrabasinal) turbidite flows. Almost all sandy and silt-sandy rocks are deposits of extra-basin turbidites the formation of which was directly related to river floodwater discharge into the sea basin. The following signs point to hyperpycnal genesis of turbidites: presence on plant detritus and wood fragments; absence of the complete classical Bouma cycle sequence; transitions of the shelf edge riverbed systems into slope channels observed in depositional slices obtained from 3D seismic data. In contrast to those classical, hyperpycnal turbidite flows could exist for quite a long time: several days or weeks (during the entire period of onshore river flooding), transporting large volumes of fluviatile sediments into the deep-water basin. The shape and size of the Achimov submarine fans formed by hyperpycnal turbidite flows were thus determined by the duration of river floods, as well as water discharge volume and onshore river sediment load. Longer periods of river floods and larger river sizes resulted in formation of larger submarine fans, and vice versa.
Alena V. Khramtsova ORCiD
Candidate of Geological and Mineralogical Sciences,
Litology
and Sedimentology Expert
Tyumen Oil Research Center,
19, ul. Perekopskaya, Tyumen, 625003, Russia
e-mail: avkhramtsova@rosneft.ru
Konstantin V. Zverev
Candidate of Geological and Mineralogical Sciences,
leading expert
LLC Gazpromneft Scientific and Technical Center
625048, Tyumen, st. 50 Let Oktyabrya, 14
e-mail: Zverev.KV@gazpromneft-ntc.ru
Alexander V. Melnikov ORCiD
Manager
LLC Tyumen Petroleum Research Center
625003, Tyumen, st. Perekopskaya, 19
e-mail: avmelnikov2@tnnc.rosneft.ru
1. Gurari F.G. Clinoforms architecture and conditions of their formation in the Neocomian deposits of West Siberian Plate (concepts evolution history). Novosibirsk: SNIIGGiMS; 2003. 140 p. In Russ.
2. Resheniya V Mezhvedomstvennogo regional’nogo stratigraficheskogo soveshchaniya po mezozoiskim otlozheniyam Zapadno-Sibirskoi ravniny [Decisions of the V Interagency meeting on regional stratigraphy of Mesozoic sequences in the West Siberian Plain]. Tyumen: ZapSibNIGNI; 1991. 54 p. In Russ.
3. Shimanskii V.V., Taninskaya N.V., Nizyaeva I.S., Kolpenskaya N.N., Raevskaya E.G., Vasil’ev N.Ya., Myasnikova M.A., Zel’tser V.N., Grislina M.N., Mirzoeva I.I., Nugumanova A.A. Paleogeografiya yury i nizhnego mela Zapadno-Sibirskoi neftegazonosnoi provintsii [Paleogeography of the Jurassic and Lower Cretaceous of the West Siberian oil and gas province]: v 2 kn. Kn. 1. – Sankt-Peterburg : FGBU «VNIGNI», Renome, 2023. – 232 s. In Russ.
4. Kontorovich A.E., Ershov S.V., Kazanenkov V.A., Karogodin Yu.N., Kontorovich V.A., Lebedeva N.K., Nikitenko B.L., Popova N.I., Shurygin B.N. Cretaceous paleogeography of the West Siberian sedimentary basin. Russian Geology and Geophysics. 2014;55(5–
6):582–609.
5. Alekseev V.P. Atlas subakval’nykh fatsii nizhnemelovykh otlozhenii Zapadnoi Sibiri (KhMAO-Yugra) [Atlas of subaqueous facies of Lower Cretaceous sediments of Western Siberia (KhMAO-Yugra)]. Ekaterinburg: Izd-vo UGGU, 2014. 284 p. In Russ.
6. Sedimentary Environments: Processes, Facies and Stratigraphy. 3rd Edition. In: H.G. Reading. In H.G. Reading. Blackwell, Oxford, 1996. 689 p.
7. Haughton P., Christopher D., McCaffrey W., Barker S. Hybrid sediment gravity flow deposits — Classification, origin and significance. Marine and Petroleum Geology. 2009;26(10):1900–1918. DOI: 10.1016/j.marpetgeo.2009.02.012.
8. Shanmugam G. Deep-water processes and facies models: implications for sandstone petroleum reservoirs. Amsterdam, Elsevier, 2006;(5):476 p.
9. Stow D.A.V., Faugères J.-C. Contourite facies and the facies model. Contourites. Amsterdam : Elsevier, 2008. pp. 223–256. DOI: 10.1016/S0070-4571(08)10013-9.
10. Zavala C., Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology. 2016;(337)36–54.
11. Zavala C., Arcuri M., Valente L.B. The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites. Revue de Paléobiologie. 2012;(11):457–469.
12. Zavala C. Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography. 2020;(9):p.21. DOI: 10.1186/s42501-020-00065-x.
13. Knapp R.T. Density currents: Their mixing characteristics and their effect on the turbulence structure of the associated flow: Proceedings of the Second Hydraulics Conference: University of Iowa Studies in Engineering, Bulletin. 1943;(27):289–306.
14. Mutti E., Davoli G., Tinterri R., Zavala C. The importance of ancient fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins. Memorie di Scienze Geologiche. 1996;(48):233–291.
15. Mutti E., Mavilla N., Angella S., Fava L.L. An introduction to the analysis of ancient turbidite basins from an outcrop perspective. American Association of Petroleum Geologists. Continuing Education Course. 1999;(39):1–98. DOI: 10.1306/CE39687.
16. Mutti E., Bernoulli D., Ricci Lucchi F., Tinterri R. Turbidites and turbidity currents from Alpine “Flysch” to the exploration of continental margins. Sedimentology. 2009;56(1):267–318. DOI: 10.1111/j.1365-3091.2008.01019.x.
17. Normark W.R., Piper D.J. Initiation processes and flow evolution of turbidity currents: implications for the depositional record. Society of Economic Paleontologists and Mineralogists. Special Publication. 1991;(46):207–230. DOI: 10.2110/pec.91.09.0207.
18. Pattison S.A.J. Storm-influenced prodelta turbidite complex in the lower Kenilworth member at Hatch Mesa, Book Cliffs, Utah, USA: implications for shallow marine facies models. Journal of Sedimentary Research. 2005;75(3):420–439. DOI: 10.2110/jsr.2005.033.
19. Plink-Bjo Rklund P., And Steel R.J. Initiation of turbidity currents: outcrop evidence for Eocene hyperpycnal flow turbidites. Sedimentary Geology. 2004;165(1–2):29–52. DOI: 10.1016/j.sedgeo.2003.10.013.
20. Heezen B.C., Menzies R.J., Schneider E.D., Ewing W.M., Granelli N.C.L. Congo submarine canyon. American Association of Petroleum Geologists Bulletin. 1964;48(7):1126–1149. DOI: 10.1306/BC743D7F-16BE-11D7-8645000102C1865D.
21. Nakajima T. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea. Journal of Sedimentary Research. 2006;76(1):59–72. DOI: 10.2110/jsr.2006.13.
22. Saller A., Li R., Dunham J. Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia. American Association of Petroleum Geologists. 2006;90(10):1585–1608. DOI: 10.1306/04110605127.
23. Mulder T., Syvitski J.P.M., Migeon S., Faugéres J.C., Savoye B. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology. 2003;20(6–8):861–882. DOI: 10.1016/j.marpetgeo.2003.01.003.
24. Khramtsova A.V., Zverev K.V. Left-sided asymmetry of Neocomian submarine fans of West-Siberian interior sea (Russia) // A new Yourney of Sedimentology: from the Pacific to the Himalaya. Abstract book. 21st International Sedimentological Congress. (Beijing, 22–26 august 2022). Beijing, 2022. 893 p.
25. Posamentier H.W., Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings // Journal of Sedimentary Research. 2003;73(3):367–388. DOI: 10.1306/111302730367.
26. Nikishin A.M., Al’mendinger O.A., Mityukov A.V., Posamentier Kh.V., Rubtsova E.V. Glubokovodnye osadochnye sistemy: ob”emnye modeli, osnovannye na 3D seismorazvedke i polevykh nablyudeniyakh [Deep-sea sedimentary systems: volumetric models based on 3D seismic and field observations]. Moscow: MAKS Press, 2012. 109 p. In Russ.
27. Khramtsova A.V., Zverev K.V. Asimmetriya morfologii i giperpiknal’nyi genezis turbiditov achimovskoi tolshchi Zapadnoi Sibiri [Asymmetry of morphology and hyperpycnal genesis of turbidites of the Achimov formation of Western Siberia] Litogenez i minerageniya osadochnykh kompleksov dokembriya i fanerozoya Evrazii. Materialy X Mezhdunarodnogo soveshchaniya po litologii (Voronezh, 18–23 September 2023). Voronezh, 2023. pp. 466–469. In Russ.