R.F. Miftakhov, P.A. Avdeev, G.N. Gogonenkov, A.K. Bazanov, I.I. Efremov
Mapping of faults based on machine learning and neural networks
DOI 10.31087/0016-7894-2021-3-123-136
Key words: seismic interpretation; faults; automation; Artificial Intelligence; machine learning; deep neural network; technique; software system.
For citation: Miftakhov R.F., Avdeev P.A., Gogonenkov G.N., Bazanov A.K., Efremov I.I. Mapping of faults based on machine learning and neural networks. Geologiya nefti i gaza. 2021;(3):123–136. DOI: 10.31087/0016-7894-2021-3-123-136. In Russ.
The stage of faults construction is one of the most important in a seismic interpretation cycle. Moreover, a process of fault tracking is rather time consuming and requirе a lot of human resources. Today, there are many technological analytical solutions aimed at automating the process of tracking the fracture surfaces. However, most of them have a number of limitations resulting from the fact that full automation of procedures in the work under the complicated geological conditions of the study area, as well as having low-quality seismic material is impossible. Thus, the problem of optimization of this process is still relevant for the production cycle of oil and gas and service companies. The paper discusses the results of the new approach to implementation of the fault automated mapping process based on the use of Artificial Intelligence through machine learning and deep neural networks. New algorithms implemented in the Geoplat Seismic Interpretation software system allow eliminating subjectivity as much as possible and considerably reduce time for structural interpretation of faults under different geological conditions.
Ruslan F. Miftakhov
Chief Technology Officer
Gridpoint Dynamics,
34, ul. Narodnogo Opolcheniya, Moscow, 123423, Russia
e-mail: r.miftakhov@geoplat.com
Pavel A. Avdeev ORCiD
Deputy Director of Business Development
Gridpoint Dynamics,
34, ul. Narodnogo Opolcheniya, Moscow, 123423, Russia
e-mail: p.avdeev@geoplat.com
Georgy N. Gogonenkov ORCiD
Doctor of technical Sciences,
Advisor to Director-General
All-Russian Research
Geological Oil Institute,
36, Shosse Entuziastov, Moscow, 105118, Russia
e-mail: gogonenkov@vnigni.ru
Andrei K. Bazanov ORCiD
Director of Business Development
Gridpoint Dynamics,
34, ul. Narodnogo Opolcheniya, Moscow, 123423, Russia
e-mail: a.bazanov@geoplat.com
Igor I. Efremov
Director General
Gridpoint Dynamics,
34, ul. Narodnogo Opolcheniya, Moscow, 123423, Russia
e-mail: i.efremov@geoplat.com
1. Barnes A.E. A filter to improve seismic discontinuity data for fault interpretation // Geophysics. – 2006. – Т. 71. – № 3. – С. P1–P4. DOI:10.1190/1.2195988.
2. Hale D. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3d seismic images // Geophysics. – 2013. – Т. 78. – № 2. – С. O33–O43. DOI:10.1190/geo2012-0331.1.3. Hall B. Facies classification using machine learning // The Leading Edge. – 2016. – Т. 35. – № 10. – С. 906–909. DOI:10.1190/tle35100906.1.
4. Priezzhev I.I., Veeken P.C.H., Egorov S.V., Strecker U. Direct prediction of petrophysical and petroelastic reservoir properties from seismic and well-log data using nonlinear machine learning algorithms // The Leading Edge – 2019. – Т. 38. – № 12. – С. 949–960. DOI:10.1190/tle38120949.1.
5. Naeini E.Z., Green S., Russell-Hughes I., Rauch-Davies M. An integrated deep learning solution for petrophysics, pore pressure, and geomechanics property prediction // The Leading Edge. – 2019. – Т. 38. – № 1. – С 53–60. DOI:10.15530/urtec-2019-111.
6. Zhao X., Lu P., Zhang Ya., Chen J., Li X. Swell-noise attenuation: A deep learning approach // The Leading Edge. – 2019. – Т. 38. – № 12. – С. 934–942. DOI:10.1190/tle38120934.1.
7. Xiong W., Ji X., Ma Y., Wang Y., AlBenHassan N.M., Ali M.N., Luo Y. Seismic fault detection with convolutional neural network // Geophysics. – 2018. – Т. 83. – № 5. – С. O97–O103. DOI:10.1190/geo2017-0666.1.
8. Wu X., Shi Y., Fomel S., Liang L., Zhang Q., Yusifov A. FaultNet3D: Predicting fault probabilities, strikes and dips with a common CNN // IEEE Transactions on Geoscience and Remote Sensing. – 2019. – Т. 57. – №11. – С. 9138–9155. DOI:10.1109/TGRS.2019.2925003.
9. Zheng Y., Zhang Q., Yusifov A., Shi Y. Applications of supervised deep learning for seismic interpretation and inversion // The Leading Edge. – 2019. – Т. 38. – № 7. – С. 526–533. DOI:10.1190/tle38070526.1.
10. Gogonenkov G.N., Timurziev A.I. Strike-slip faults in the West Siberian basin: implications for petroleum exploration and development. Russian Geology and geophysics. 2010;(3):304–316.