S.V. Shimanskiy, Yu.E. Petrova, N.Ya. Vasil’ev, A.N. Merkulova, G.A. Galadzhyan
Features of hydrocarbon system formation based on basin modelling and geological exploration priorities in continental part of Baltic Independent Petroleum Area
DOI 10.47148/0016-7894-2024-5-17-32
Key words: Baltic Independent Petroleum Area; Baltic syneclise; petroleum system; oil and gas source rock; 1D basin modelling; play; reservoir; trap; impermeable bed; Transformation Ratio; paleodepth; paleotemperature; sedimentation; heat flow; table of events.
For citation: Shimanskiy S.V., Petrova Yu.E., Vasil’ev N.Ya., Merkulova A.N., Galadzhyan G.A. Features of hydrocarbon system formation based on basin modelling and geological exploration priorities in continental part of Baltic Independent Petroleum Area. Geologiya nefti i gaza. 2023;(5):17–32. DOI:10.47148/0016-7894-2023-5-17-32. In Russ.
The authors present the current evaluation of oil industry in the Kaliningrad region. They describe characteristics of petroleum systems of the Baltic Independent Petroleum Area and discuss factors that have influenced their development. It is found that the conventional oil accumulations in reservoirs of three plays were formed as a result of hydrocarbon supply from heterochronous source rocks. Analysis of paleotectonic development of five oil fields’ structures in the Baltic Independent Petroleum Area, which were discovered in continental part of the Kaliningrad region was carried out. It was determined that hydrocarbon accumulations in Middle Cambrian reservoir in the western part of the region are confined to structural traps formed in Hercynian tectogenesis phase. At the same time, the accumulations of the eastern part are secondary and were formed in Cimmerian and Alpine traps. The 1D-basin modelling of continental part of the Baltic Independent Petroleum Area allowed revealing considerable anisotropy of geological parameters over the entire territory from west to east, which is the cause of zonation of each individual hydrocarbon system (Cambrian, Ordovician, and Silurian) development, as well as the depositional basin as a whole. In western areas, all the source rocks stayed in oil window for a long time, and realized their generation potential to the maximum; in central parts — by half and only Cambrian source rocks; and in the east — no one source rock reached oil window. Consequently, hydrocarbon accumulations in the east of the region could be formed only because of fluid migration from central and western areas. Based on the results of 1D basin modelling of continental part of the Baltic Independent Petroleum Area, priority areas for regional geological exploration are identified.
Sergei V. Shimanskiyч ORCiD Scopus
Candidate of Geological and Mineralogical Sciences,
Deputy Head of Directorate, Head of Department
The Federal Agency for Mineral Resources (Rosnedra),
4/6, ul. Bolshaya Gruzinskaya, Moscow, 123995, Russia
e-mail: sergey.shimanskiy@gmail.com
Yuliya E. Petrova ORCiD
Candidate of Geological and Mineralogical Sciences,
Deputy Director
St. Petersburg branch
of the All-Russian research geological oil institute,
bld. 2, 11, ul. Smolyanaya, St. Petersburg, 192019, Russia
e-mail: PetrovaYulia@vnigni.ruu
Nikolai Ya. Vasilyev ORCiD
Lead Engineer
St. Petersburg branch
of the All-Russian research geological oil institute,
bld. 2, 11, ul. Smolyanaya, St. Petersburg, 192019, Russia
e-mail: Vasiliev@vnigni.ru
ORCID ID: 0009-0002-0682-
Anna N. Merkulova ORCiD
Researcher
St. Petersburg branch
of the All-Russian research geological oil institute,
bld. 2, 11, ul. Smolyanaya, St. Petersburg, 192019, Russia
e-mail: merkulova@vnigni.ru
Georgii A. Galadzhyan ORCiD
Research Engineer
St. Petersburg branch
of the All-Russian research geological oil institute,
bld. 2, 11, ul. Smolyanaya, St. Petersburg, 192019, Russia
e-mail: galadjan@vnigni.ru
1. Ob utverzhdenii Strategii prostranstvennogo razvitiya RF na period do 2025 g. [On approval of the RF Spatial Development Strategy for the period until 2025]. In: Rasporyazhenie Pravitel’stva Rossiiskoi Federatsii ot 13 fevralya 2019 g. № 207-r. Moscow; 2019. In Russ.
2. Strategiya razvitiya mineral’no-syr’evoi bazy Rossiiskoi Federatsii do 2035 goda [Strategy of raw material base development in Russian Federation for the period until 2035]. In: Rasporyazhenie Pravitel’stva Rossiiskoi Federatsii ot 22 dekabrya 2018 g. № 2914-r. Moscow; 2018. In Russ.
3. Prokhorov V.L., Alekseeva I.B. Main results of the 2009-2020 period of geological exploration activity, concerning the hydrocarbon accumulations belonging to the territory of the Kaliningrad onshore area and suggestions for the further research. Neftegazovaya geologiya. Teoriya i praktika. 2022;17(24). Available at: https://ngtp.ru/upload/iblock/b82/33_2022.pdf (accessed 10.10.2023). DOI:10.17353/2070-5379/33_2022. In Russ.
4. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1:1 000 000 (tret’e pokolenie). Seriya Tsentral’no-Evropeiskaya. List N-(34) – Kaliningrad. Ob”yasnitel’naya zapiska [State Geological Map of the Russian Federation. Scale 1:1 000 000 (3rd generation). Central European Series. Sheet N-(34) – Kaliningrad. Explanatory Note]. – St. Petersburg: Kartfabrika VSEGEI; 2011. 226 p.
5. Spisok naselennykh punktov Rossiiskoi Federatsii, raspolozhennykh v seismicheskikh raionakh, s ukazaniem raschetnoi seismicheskoi intensivnosti v ballakh shkaly MSK-64 dlya srednikh gruntovykh uslovii i trekh stepenei seismicheskoi opasnosti – A (10%), B (5%), C (1%) v techenie 50 let v sootvetstvii s Komplektom kart obshchego seismicheskogo raionirovaniya – OSR-2016-A, OSR-2016-V, OSR-2016-S [List of settlements of the Russian Federation located in seismic zones, indicating the estimated seismic intensity in MSK-64 scale points for average soil conditions and three degrees of seismic hazard – A (10%), B (5%), C (1%) for 50 years in accordance with the Set of General Seismic Zoning Maps – OSR-2016-A, OSR-2016-B, OSR-2016-C]. In: SP 14.13330.2018. Svod pravil. Stroitel’stvo v seismicheskikh raionakh. Aktualizirovannaya redaktsiya SNiP II-7-81* (utv. i vveden v deistvie Prikazom Minstroya Rossii ot 24.05.2018 N 309/pr). Moscow: Standartinform; 2018. – 114 p.
6. Merkulova A.N., Petrova Yu.E., Shimanskiy S.V. Kharakteristika uglevodorodnykh sistem Baltiyskoy samostoyatel’noy neftenosnoy oblasti [Characteristics of petroleum systems of the Baltic oil-bearing region]. Neftegazovaya Geologiya. Teoriya I Praktika. 2024;19(3). Available at: https://www.ngtp.ru/rub/2024/21_2024.htm (accessed on 10.05.2024)
7. Bazhenova T.K., Shapiro A.I., Vasilyeva V.F., Otmas A.A. Geochemistry of organic matter and hydrocarbons generation in the Lower Silurian deposits of the Kaliningrad region. Neftegazovaya geologiya. Teoriya i praktika. 2012;7(2). Available at: http://www.ngtp.ru/rub/1/18_2012.pdf (accessed on 15.05.2017). In Russ.
8. Kosakowski P., Kotarba M. J., Piestrzynski A., Shogenova A., Wiecław D. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian–Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland). International
Journal of Earth Sciences. 2016;106(2):743–761. DOI: 10.1007/s00531-016-1328-x.
9. Kosakowski P., Zakrzewski A., Waliczek M. Ordovician and Silurian Formations of the Baltic Syneclise (NE Poland): An Organic Geochemistry Approach. Lithosphere. 2022;(1). DOI: 10.2113/2022/7224168.
10. Yang S., Schulz H.-M., Schovsbo N.H., Bojesen-Koefoed J.A. Oil-source rock correlation of the Lower Paleozoic petroleum system in the Baltic Basin (northern Europe). AAPG Bulletin. 2017;101(12):1971–1993. DOI: 10.1306/02071716194.
11. Zdanaviciute O., Lazauskiene J., Khoubldikov A.I., Dakhnova M.V., Zheglova T.P. The middle Cambrian succession in the central Baltic basin: geochemistry of oils and sandstone reservoir characteristics. Journal of Petroleum Geology. 2012;35(3):237–254. DOI:10.1111/j.1747-5457.2012.00528.x.
12. Fadin Y J., Panova E.G., Oleynikova G.A., Voronin D.O. Geochemical features of black shales from Narke deposits (S. Sweden). Vestnik of Saint-Petersburg University. Series 7. Geology. Geography. 2016. Issue 2. pp. 27–36. DOI: 10.21638/11701/spbu07.2016.203. In Russ.
13. Kharin G.S., Eroshenko D.V. Basic intrusives and hydrocarbonic potential of the South-East Baltic. Oceanology. 2014;54(2):245–258. DOI: 10.1134/S0001437014020118.
14. Motuza G., Šliaupa S., Timmerman M. J. Geochemistry and 40Ar/39Ar age of Early Carboniferous dolerite sills in the southern Baltic Sea. Estonian Journal of Earth Sciences. 2015;64(3):233–248. DOI:10.3176/earth.2015.30.
15. Elforsk. Final report on prospective sites for the geological storage of CO2 in the southern Baltic sea. 2014. Available at: https://www.globalccsinstitute.com/resources/publications-reports-research/final-report-on-prospective-sites-for-the-geological-storageof-co2-in-the-southern-baltic-sea/ (accessed on 08.05.2024).
16. Kaminskaite-Baranauskiene I., Cichon-Pupienis A., Makauskas P. Silurian barrier reef in Lithuania: Reservoir properties and low enthalpy geothermal heat potential. Heliyon. 2024;10(4). DOI: 10.1016/j.heliyon.2024.e26360.
17. Michelevicius D., Kaminskas D., Blažauskas N. The Silurian barrier reef structures of the Baltic petroleum basin (Lithuania) according to recent 3D seismic results. In: IX Congreso de Exploración y Desarrollo de Hidrocarburos, Conference Paper, IAPG Instituto Argentino del Petróleo y el Gas (Nov. 2014). 2014. pp. 527–538. DOI: 10.13140/2.1.2521.3121.