K.O. Sobornov
The role of salt structures in the architecture of the Arctic basins of Western Eurasia according to seismic data
DOI 10.47148/0016-7894-2025-1-15-36
Key words: Upper Ordovician salt; salt diapirs; Uralian rifting; Arctic’ basins; regional seismic surveying; petroleum potential.
For citation: Sobornov K.O. The role of salt structures in the architecture of the Arctic basins of Western Eurasia according to seismic data. Geologiya nefti i gaza. 2025;(1):15–36. DOI: 10.47148/0016-7894-2025-1-15-36. In Russ.
Acknowledgments. The author is deeply indebted to V.A. Baldin, G.A. Belenitskaya, A.D. Dzyublo, I.P. Korotkov, A.M. Nikishin, V.A. Skorobogatov, and D.V. Yakovlev for fruitful discussions concerning various aspects of seismic interpretation and geology of Arctic basins.
Until now, salt structures in the Arctic basins of western Eurasia have been considered to be isolated local phenomena. Interpretation of regional seismic data shows that evaporite deposits are widespread in the study area and that versatile salt deformations are an important factor in their structure. The collected data on salt structures have been reviewed in a regional context. The updated interpretation suggests that the formation of evaporites took place in the Late Ordovician under conditions of Uralian rifting. The subsequent opening of the Uralian Ocean divided this salt basin into several parts, which later became part of the Timan-Pechora, Barents, West Siberian and Yenisei-Khatanga basins. A dedicated study of the salt structures can update current knowledge of the structural and sedimentary evolution of the Arctic basins of Western Eurasia and the development of their oil and gas systems.
Konstantin O. Sobornov ORCiD
Doctor of Geological and Mineralogical Sciences,
Chief researcher
All-Russian Research
Geological Oil institute,
36, sh. Entuziastov, Moscow, 105118, Russia
e-mail: Sobornov@vnigni.ru
1. O sostoyanii i ispol’zovanii mineral’no-syr’evykh resursov Rossiiskoi Federatsii v 2022 godu: Gosudarstvennyi doklad Ministerstvo prirodnykh resursov i ekologii RF [On the state and use of mineral resources of the Russian Federation in 2022: State report of the Ministry of Natural Resources and Environment of the Russian Federation]. Federal’noe agentstvo po nedropol’zovaniyu. Moscow, 2023. 640 p.
2. Bally A.W., Sawyer D., Sinkewich A. Global Tectonic and Basin Maps Albert. Search and Discovery. Article № 30444. 2020. Available at: https://www.searchanddiscovery.com/documents/2020/30444bally/ndx_bally.pdf (accessed on 12.01.2023).
3. Brekhuntsov A.M., Monastyrev B.V., Nesterov I.I. Skorobogatov V.A. Neftegazovaya geologiya Zapadno-Sibirskoi Arktiki [Oil and Gas Geology of the West Siberian Arctic]. Tyumen’: MNP Geodata, 2020. 464 p.
4. Dolgunov K.A., Martirosyan V.N., Vasilieva E.A., Sapozhnikov B.G. Structural and tectonic peculiarities of structure and prospects of oil and gas potential of the northern part of Barents-Kara region. Oil and gas geology. 2011;(6):70–83.
5. Ust’yantsev V.L., Shumeikin S.A., Leonchik K.M., Byakov A.A., Agroskina I. V., Knyazeva Yu. V., Mallak D. A. Geologicheskaya izuchennost’ i prognoz neftegazonosnosti nedr shel’fa arkticheskikh morei Rossiiskoi Federatsii [Geological exploration and forecast of oil and gas potential of the subsoil of the Arctic seas shelf of the Russian Federation]. Neft’. Gaz. Novatsii. 2023;269(4):6–12.
6. Shein V.S. Geology and petroleum potential of Russia [Geologiya i neftegazonosnost’ Rossii]. Moscow: Izd-vo VNIGNI; 2012. 848 p.
7. Kazanin G.S., Shipilov Eh.V., Prishchepa O.M., Kazanin A.G., Shkarubo S.I., Shlykova V.V. Shel’fovye osadochnye basseiny Rossiiskoi Arktiki: geologiya, geoehkologiya, mineral’no-syr’evoi potentsial [Sedimentary shelf basins of Russian Arctic: geology, geoecology, and mineral resource potential]. Saint Petersburg: Renome; 2020. 544 p. DOI: 10.25990/DHW6-9X41. In Russ.
8. Drachev S.S., Malyshev N.A., Nikishin A.M. Tectonic history and petroleum geology of the Russian Arctic Shelves: An overview. Petroleum In: B.A. Vining, S.C Pickering, eds. Proceedings 7th Petroleum Geology Conference. Publisher Geological Society. 2010. P. 591-619. DOI: 10.1144/0070591.
9. Martins G. Tectonostratigraphic evolution of the Novaya Zemlya archipelago, Arctic Russia: Challenges, implications, and potential. Earth-Science Reviews. 2024;255. 104842. DOI: 10.1016/j.earscirev.2024.104842.
10. Kornelyuk Yu.I., Kochetkov T.P., Emel’yantsev T.M. Nordvik-Khatangskii neftenosnyi raion (kratkii ocherk geologii i neftenosnosti) [Nordvik-Khatanga oil-bearing region (a brief outline of geology and oil potential)]. Nedra Arktiki. Leningrad : Izd-vo Glavsevmorputi, 1946. 73 p.
12. Afanasenkov A.P., Yakovlev D.V. Application of electrical prospecting methods to petroleum exploration on the northern margin of the Siberian Platform. Russian Geology and Geophysics. 2018;(7):1032–1052. DOI: 10.1016/j.rgg.2018.07.008.
11. Grunis E.B., Rostovshchikov V.B., Bogdanov B.P. Ordovician Salts and Their Role in the Structure and Oil and Gas Potential of the Northeast of the Timan-pechora Province. Georesources. 2016;18(1):13–23.
13. Lorenz H., Gee D.G., Korago E., Kovaleva G., McClelland W.C., Gilotti J.A., Frei D. Detrital zircon geochronology of Palaeozoic Novaya Zemlya — a key to understanding the basement of the Barents Shelf. Terra Nova. 2013;25(6):496–503. DOI: 10.1111/ter.12064.
14. Nikishin V.A. Evaporate deposits and salt diapirs of the Urvantsev trough on the north Kara sea. Moscow university geology bulletin. 2012;(4):54–57. DOI: 10.3103/S0145875212040084.
15. Malyshev N.A., Nikishin V.A., Nikishin A.M., Obmetko V.V., Kleshchina L.N. The ordovician Urvantsev evaporite basin in the northern part of the Kara sea. Doklady earth sciences. 2013;448(4):1–4. DOI: DOI: 10.1134/S1028334X13020062.
16. Shipilov E.V. Solyanaya tektonika v okrainno-kontinental’nykh evaporitovykh basseinakh Arktiki [Salt tectonics in continental margin evaporite basins of the Arctic]. Trudy Fersmanovskoi nauchnoi sessii GI KNTs RAN. 2018;(15):401–404. DOI: 10.31241/FNS.2018.15.101.
17. Sobornov K.O. Structure of salt diapirs in the Western Siberian basin and Yenisei-Khatanga trough based on seismic data. Geotectonics. 2024;(5):69–94. DOI: 10.31857/S0016853X24050044.
18. Sobornov K.O. Regional structure, salt diapirism and petroleum potential of the offshore part of the Timan-Pechora basin. Scientific journal of the Russian gas society. 2023;37(1):16–29. DOI 10.55557/2412-6497-2023-1-16-29. In Russ.
19. Jackson M.P.A., Hudec M.R. Salt tectonics: principles and practice. Cambridge University Press; 2017. 498 p. DOI: 10.1017/9781139003988.
20. Stewart S.A. Hormuz salt distribution and influence on structural style in NE Saudi Arabia. Petroleum Geoscience. 2018;24(2):143–158. DOI: 10.1144/petgeo2017-011.
21. Belenitskaya G.A. Soli Zemli: tektonicheskie, kinematicheskie i magmaticheskie aspekty geologicheskoi istorii. Moscow: GEOS, 2020. 605 p.
22. Sobornov K.O. Salt-bearing fold-and-thrust belts of Northern and Central Eurasia: structure and petroleum potential. Geologiya nefti i gaza. 2024;(5):45–66. DOI: 10.47148/0016-7894-2024-5-45-66. In Russ.
23. Gololobov Yu.N., Druzhinina E.A., Suprunenko O.I. Sin-sedimentary irregularities of the sedimentary cover in the south most Kara sea offshore (on the basis of recent multidisciplinary regional seismic, gravity and magnetic surveys). Geofizika. 2019;(3):2–9.
24. Baldin V.A., Munasypov N.Z., Pisetskii V.B. Structural features and oil and gas potential of mesozoic inversion ring structures in the North of Western Siberia. Geofizika. 2023;(3):21–29. DOI 10.34926/geo.2023.61.96.003.
25. Sokolov S.Yu., Moroz E.A., Sukhikh E.A., Razumovskii A.A., Levchenko O.V. Manifestations of deep degasing into the water column and upper part of the Pechora sea sedimentary section. Georesources. 2019;21(4):68–76. DOI: 10.18599/grs.2019.4.68-76.
26. Semb P.H. Possible seismic hydrocarbon indicators in offshore Cyprus and Lebanon. GeoArabia. 2009;14(2):49–66. DOI: 10.2113/geoarabia140249.
27. Morley C.K. 3-D seismic imaging of the plumbing system of the Kora Volcano, Taranaki Basin, New Zealand: The influence of syn-rift structure on shallow igneous intrusion architecture. Geosphere. 2018;14(6):2533–2584. DOI: 10.1130/GES01645.1
28. Astakhov V.I. Quaternary glaciotectonics of the Ural-Siberian north. Russian Geology and Geophysics. 2019;60(12):1353–1367. DOI: 10.15372/RGG2019136.
29. Weimer P., Matt V., Bouroullec R., Adson J., Lapinski T.G., van den Berg AA., Roesink J.G. Three-dimensional petroleum systems modeling of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico: A case study. AAPG Bull. 2017;101(7):1173–1201. DOI: 10.1306/09011608153.
30. Sternbach C.A. Super basin thinking: methods to explore and revitalize the world’s greatest petroleum basins. AAPG Bulletin. 2020;104(12):2463–2506. DOI: 10.1306/09152020073.