A.I. Varlmov, G.N. Gogonenkov, P.N. Melnikov, E.N. Cheremisinа
Development of digital technologies in petroleum industry and subsoil use in Russia: current state and future considerations
DOI 10.31087/0016-7894-2021-3-5-20
Key words: digital technologies; digitization; oil and gas geological exploration; geoinformation systems; geological information; innovative technologies; import substitution.
For citation: Varlamov A.I., Gogonenkov G.N., Mel’nikov P.N., Cheremisina E.N. Development of digital technologies in petroleum industry and subsoil use in Russia: current state and future considerations. Geologiya nefti i gaza. 2021;(3):5–20. DOI: 10.31087/0016-7894-2021-3-5-20. In Russ.
Creation and mainstreaming of digital technologies in all stages of geological exploration is in accordance with main provisions of the “Digital Economy of the Russian Federation” national project approved by the Russian Federation Presidential Executive Order No. 204 dated May 07, 2018 “National Objectives and Strategic Targets of the Russian Federation Development for the Period Until 2024”. The paper defines “digitization”, formulates the objective and main tasks implementation of which will significantly increase the effectiveness of geological exploration of subsoil, reproduction of mineral resource base and management of sustainable subsoil use. It is noted that despite the predominant use of imported hardware and software products, the country is developing its own hardware and software in almost all the areas of geological exploration activities, largely covering the functionality of imported tools and technologies. It is justified that for further development and introduction of domestic hardware and software, the state support in the form of research and development work order is necessary. The main areas of digitization in geological exploration are: development of new and further development of the existing software aimed at geological and geophysical information gathering and verification; creation of new hardware and software products and technologies; creation of new and updating of active GIS projects to address key problems of geological exploration of subsoil in accordance with functional areas of the Rosnedra activities. In the final part of the article, the authors discuss the factors that
hinder active digitization, namely: difficulties of collecting and verifying many types of legacy data; the need to digitize much of legacy data, especially well data; the significant use of imported software tools, hindering development and introduction of Russian analogues; the practical lack of government investments in the development of science and specialist software in the area of geological exploration; shortage of staff having interdisciplinary competencies at the interface between geology and IT.
Aleksey I. Varlamov Scopus
Doctor of Geological and Mineralogical Sciences,
Academic Director
All-Russian Research
Geological Oil Institute,
36, Shosse Entuziastov, Moscow, 105118, Russia
e-mail: info@vnigni.ru
Georgy N. Gogonenkov Scopus
Doctor of technical Sciences,
Advisor to Director-General
All-Russian Research
Geological Oil Institute,
36, Shosse Entuziastov, Moscow, 105118, Russia
e-mail: gogonenkov@vnigni.ru
Pavel N. Melnikov
Candidate of Geological and Mineralogical Sciences,
Director General
All-Russian Research
Geological Oil Institute,
36, Shosse Entuziastov, Moscow, 105118, Russia
e-mail: melnikov@vnigni.ru
Evgeniya N. Cheremisina Scopus
Doctor of Technical Sciences, Member of the Russian Academy
of Natural Sciences, Professor, Head of Department
All-Russian Research
Geological Oil Institute
8, Varshavskoe shosse, Moscow, 117105, Russia
e-mail: head@geosys.ru
1. Kozlov E.A. Prognosticheskaya fil’tratsiya kratnykh voln [Predictive filtering of multiples]. Prikladnaya geofizika. 1976;(82):3–18. In Russ.
2. Glogovskii V.M., Raiman M.P., Finikov D.B. Stupenchataya migratsiya [Multistage migration]. Prikladnaya geofizika. 1984;(109):28–38. In Russ.
3. Gogonenkov G.N., Moroz B.P., Pleshkevich A.L., Turchaninov V.I. Teoreticheskie osnovy i prakticheskoe ispol’zovanie otechestvennoi programmy 3D-glubinnoi seismicheskoi migratsii do summirovaniya [Basics and field use of pre-stack 3D deep seismic migration]. Geofizika. 2007;(4):15–24. In Russ.
4. Zheng Y., Zhang Q., Yusifov A., Shi Y. Applications of supervised deep learning for seismic interpretation and inversion. The Leading Edge. 2019;(7):526–533. DOI: 10.1190/tle38070526.1.
5. Peters B., Haber E., Granek J. Neural networks for geophysicists and their application to seismic data interpretation. The Leading Edge. 2019;(7):534–540. DOI: 10.1190/tle38070534.1.
6. Guillon S., Joncour F., Barrallon P-E., Castanié L. Ground-truth uncertainty-aware metrics for machine learning applications on seismic image interpretation: Application to faults and horizon extraction. The Leading Edge. 2020;(10):734–741. DOI: 10.1190/tle39100734.1.
7. Karnaukhov A.M. Perspektivy tsifrovizatsii issledovatel’skoy deyatel’nosti v geologorazvedke [Perspectives of research activities digitalization in geological exploration]. Neftegazovaya Geologiya. Teoriya I Praktika. 2017;12(4). Available at: http://www.ngtp.ru/rub/3/44_2017.pdf (accessed 18.01.2019). DOI: 10.17353/2070-5379/44_2017. In Russ.
8. Varlamov A.I., Afanasenkov A.P., Vitsenovskii M.Yu. et al. Sostoyanie i puti narashchivaniya syr’evoi bazy uglevodorodov v Rossiiskoi Federatsii [Status and ways to build up the hydrocarbon raw materials base in the Russian Federation]. In: VNIGNI-65. Lyudi, rezul’taty, i perspektivy. Moscow: VNIGNI; 2018. pp. 109–128. In Russ.
9. Manning T., Ablyazina D., Quigley J. The nimble node – Million-channel land recording systems have arrived. The Leading Edge. 2019;(9):706–715. DOI: 10.1190/tle38090706.1.
10. Cheremisina Ye.N., Finkelstein M.Ya., Lyubimova A.V. GIS INTEGRO — importozameshchayushchii programmno-tekhnologicheskii kompleks dlya resheniya geologo-geofizicheskikh zadach [GIS INTEGRO – import substitution software for geological and geophysical tasks]. Geoinformatika. 2018. (3):8–17. In Russ.
11. Deev K.V. Perspektivy razvitiya GIS INTEGRO [Perspective ways of the GIS INTEGRO development]. Geoinformatika. 2020;(1):3–7. In Russ.
12. Lyubimova A.V., Khromova N.Yu. Kompleksnyi analiz vozmozhnostei GIS-paketov dlya resheniya kartograficheskikh zadach v sfere prirodopol’zovaniya [Comprehensive analysis of GIS package features for solving cartographic problems in the field of natural resource management]. Geoinformatika. 2020;(2):11–19. In Russ.
13. Zhukov K.A., Kravchenko M.N., Lyubimova A.V. Metodiko-tekhnologicheskoe obespechenie rabot po kolichestvennoi otsenke resursov uglevodorodov [Methodological and technological support of the hydrocarbon resources assessment]. Geoinformatika. 2018;(3):27–34. In Russ.
14. Arbuzova E.V., Lyubimova A.V., Tolmacheva E.R. Analiz kartograficheskikh materialov po geologo-geofizicheskoi izuchennosti na UVS dlya resheniya prakticheskikh zadach neftyanoi geologii [Analysis of cartographic data, representing of the geophysical survey coverage (profiles and wells), for solving of practical problems of petroleum geology]. Geoinformatika. 2018;(3):98–105. In Russ.
15. Cheremisina E.N., Lyubimova A.V., Kreider O.A. Geoinformatsionnye tekhnologii v podgotovke kadrov v sfere upravleniya prirodopol’zovaniem [Geoinformation technologies for education and training of personnel in the field of nature-use management]. Geoinformatika. 2018;(3):111–115. In Russ.