K.Yu. Vasileva, V.B. Ershova, K.Yu. Mikhailova, K.A. Tikhonova, V.A. Kolesov, V.Yu. Prokof’ev, I.Yu. Bugrovа
Paleokarst and associated post-sedimentary processes: example of a well in Yurubcheno-Tokhomsky oil and gas accumulation zone
DOI 10.47148/0016-7894-2025-4-137-150
Key words: Riphean; dolomite; post-sedimentation alterations; karst; cathode-ray luminescence; void space changes.
For citation: Vasileva K.Yu., Ershova V.B., Mikhailova K.Yu., Tikhonova K.A., Kolesov V.A., Prokof’ev V.Yu., Bugrova I.Yu. Paleokarst and associated postsedimentary processes: example of a well in Yurubcheno-Tokhomsky oil and gas accumulation zone. Geologiya nefti i gaza. 2025;(4):137–150. DOI: 10.47148/0016-7894-2025-4-137-150. In Russ.
Acknowledgments: The authors express their sincere gratitude to the reviewer and the editors of Oil and Gas Geology for their careful review of the manuscript and assistance in preparing it for publication.
The authors present a detailed lithological description of the Yurubchensky Formation, Riphean, that occur below the surface of pre-Vendian unconformity (south-west of the Siberian Platform, Baikitsky anteclise, Yurubcheno-Tokhomsky area of oil and gas accumulation). The studied rocks have undergone different post-sedimentation transformations, namely: recrystallization, silicification, desalinisation, dedolomitisation, formation of stylolite seams and cracks, filling voids with authigenous quartz and dolomite. A paragenetic diagram of post-sedimentary changes was created for the investigated section interval, and their relationship with the main stages of the Baikitsky anteclise tectonic evolution was determined. Recrystallization, stylolitization, and, possibly, silicification are among the processes related to the stages of sedimentation and basin subsidence. Crack formation and filling with authigenous minerals are attributed to the orogeny stage. Loss of void space with formation of tight, virtually impermeable rock matrix is associated with subsidence and folding stages. The remaining rock porosity (1–2 %) is interpreted as resulting from the partial preservation of small intercrystalline voids. The formation of the void space, later filled with hydrocarbons, occurred under near-surface erosion conditions, during which intensive dolomite dissolution caused the formation of intercrystalline and intracrystalline voids and cracks. The presented paragenetic diagram show that, within the studied interval of the section, the brecciated zones of karst are the most favorable for retaining reservoir quality.
Kseniia Yu. Vasileva ORCiD Scopus
Candidate of Geological and Mineralogical Sciences
Associate professor
St. Petersburg State University,
7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
e-mail: k.vasilyeva@spbu.ru
AuthorID: 957973
Victoria B. Ershova ORCiD Scopus
Doctor of Geological and Mineralogical Sciences
Associate professor
Geological Institute of Russian Academy of Sciences
7, per. Pyzhyovskiy, Moscow, 119017, Russia
e-mail: v.ershova@spbu.ru
Author ID: 155538
Kseniya Yu. Mikhailova ORCiD Scopus
Engineer
St. Petersburg State University,
7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
e-mail: mikhailova.ky@gmail.com
Author ID: 1141475
Kseniya A. Tikhonova
Chief Specialist
RN-KrasnoyarskNIPIneft LLC,
65D, ul. 9 maya, Krasnoyarsk, 660098, Russia
e-mail: TikhonovaKA@knipi.rosneft.ru
Author ID: 1052529
Vladimir A. Kolesov ORCiD Scopus
Expert
Institute of Geology and Development of Fossil Fuels
25/1 ul. Vavilova, Moscow, 109472, Russia
e-mail: v_kolesov@igirgi.su
Author ID: 943086
Vsevolod Yu. Prokof’ev ORCiD Scopus
Doctor of geological and mineralogical Sciences,
Leading researcher
Institute of Geology of Ore Deposits, Petrography, Mineralogy and
Geochemistry Russian Academy of Sciences
35, per. Staromonetny, Moscow, 119017, Russia
e-mail: vpr2004@rambler.ru
Author ID: 59504
Irina Yu. Bugrova ORCiD Scopus
Candidate of Geological and Mineralogical Sciences
Associate professor
St. Petersburg State University,
7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
e-mail: i.bugrova@spbu.ru
Author ID: 61433
1. Grantham P.J. The occurrence of unusual C27 and C29 sterane predominance in two types of Oman crude oil. Organic Geochemistry. 1986;9(1):1–10. DOI: 10.1016/0146-6380(86)90077-X.
2. Craig J., Biffi U., Galimberti R.F., Ghori K.A.R., Gorter J.D., Hakhoo N., Le Heron D.P., Thurow J., Vecoli M. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks. Marine and Petroleum Geology. 2013;(40):1–47. DOI: 10.1016/j.marpetgeo.2012.09.011.
3. Wang G., Wang T.-G., Han K., Wang L., Shi S. Recognition of a novel Precambrian petroleum system based on isotopic and biomarker evidence in Yangtze platform, South China. Marine and Petroleum Geology. 2015;(68):414–426. DOI: 10.1016/j.marpetgeo.2015.09.003
4. Postnikova O.V., Fomicheva L.N., Solov’eva L.V. Paleogeographic and paleogeody- namic formation conditions of riphean-vendian sedimentary basin in the south of Siberian platform regarding its oil and gas presence. Geologiya nefti i gaza. 2008(1):8–13.
5. Glebovitskii V.A., Khil’tova V.Ya., Kozakov I.K. Tectonics of the Siberian craton: interpretation of geological, geophysical, geochronological, and isotopic geochemical data. Geotektonics. 2008;(1):8–20. DOI: 10.1134/s0016852108010020.
6. Stratigrafiya neftegazonosnykh basseinov Sibiri. Kembrii Sibirskoi platformy. V. 1. Stratigrafiya [Stratigraphy of the Siberian oil and gas bearing basins. Siberian Platform: Cambrian. VOL. 1. Stratigraphy]. In: Yu.Ya. Shabanov, ed. Novosibirsk: INGG SO RAN; 2016. 485 p. In Russ.
7. Khabarov E.M., Varaksina I.V. The structure and depositional environments of Mesoproterozoic petroliferous carbonate complexes in the western Siberian craton. Russian Geology and Geophysics. 2011;52(8):1173–1198. DOI: 10.1016/j.rgg.2011.07.014.
8. Bagrintseva K.I., Krasil’nikova N.B., Sautkin R.S. Formation conditions and properties of the riphean carbonaceous reservoirs of the Yurubcheno-tokhomsk deposit. Geologiya nefti i gaza. 2015;(1):24–40.
9. Khabarov E.M., Ponomarchuk V.A., Morozova I.P., Varaksina I.V., Saraev S.V. Sea level and δ13c trends in Riphean petroliferous deposits on the western margin of the siberian craton (Baikit uplift). Russian Geology and Geophysics. 2002;43(3):211–239.
10. Vernikovskii V.A., Vernikovskaya A.E., Nozhkin A.D., Ponomarchuk V.A. Riphean ophiolite of the Isakovsky Belt, the Yenisei Ridge. Geologiya I geofizika. 1994;35(7–8):169–181.
11. Vernikovskii V.A., Kazanskii A.Yu., Matushkin N.Yu., Metelkin D.V., Sovetov Yu.K. The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: eological, structural, sedimentological, geochronological, and paleomagnetic data. Russian Geology and Geophysics. 2009;50(4):372–387.
12. Kharakhinov V.V., Shlenkin S.I., Zereninov V.A. et al. Petroleum potential of precambrian strata of Kuyumbinsko-Yurubcheno-Tokhomsky oil and gas accumulation area. Neftegazovaya geologiya. Teoriya i praktika. 2011;6(1): Available at: https://ngtp.ru/rub/4/12_2011.pdf (accessed 30.12.2024). In Russ.
13. Vasileva K.Y., Ershova V.B., Khudoley A.K., Khusnitdinov R.R., Kuznetsov A.B., Prokofiev V.Y., Bekker A. Diagenetic history of the proterozoic carbonates and its role in the oil field development in the Baikit Anteclise, Southwestern Siberia. Precambrian Research. 2020;(342):105690. DOI: 10.1016/j.precamres.2020.105690.
14. Yapaskurt O.V. Stadial’nyi analiz litogeneza [Stadium analysis of lithogenesis]. Moscow: Izd-vo MGU, 1994. 142 p.
15. Choquette P.W., Pray L.C. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. American Association of Petroleum Geologists Bulletin. 1970;(54):207–250.
16. Borisenko A.S. Izuchenie solevogo sostava gazovo-zhidkikh vklyuchenii v mineralakh meto-dom kriometrii [Study of the salt composition of gas-liquid inclusions in minerals by cryometry]. Geologiya i geofizika. 1977;(8):16−27.
17. Brown P. FLINCOR: a computer program for the reduction and investigation of fluid inclusion data. American Mineralogist. 1989;(74):1390–1393.
18. Coniglio M. Dolomitization and recrystallization of middle Silurian reefs and platformal car-bonates in the Guelph Formation, Michigan Basin, southwestern Ontario. Bulletin of Canadian Petroleum Geology. 2003;51(2):177–199. DOI: 10.2113/51.2.177
19. Machel H.G. Concepts and models of dolomitization: a critical reappraisal. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society, London, Special Publica-tions. 2004;235. pp. 7–63. DOI: 10.1144/GSL.SP.2004.235.01.02.
20. Redder E. Flyuidnye vklyucheniya v mineralakh [Fluid inclusions in minerals]. Moscow: Izd-vo Mir, 1987. T. 1+2. Pp. 560+560.
21. Kuznetsov V.G. Karbonatnye otlozheniya dokembriya [Precambrian carbonate deposits]. Moscow: I.P. Matushkina, 2010. 151 p.
22. Braithwaite C.J.R., Rizzi G. The geometry and petrogenesis of hydrothermal dolomites at Navan, Ireland. Sedimentology. 1997;(44):421–440. DOI: 10.1046/j.1365-3091.1997.d01-30.x.
23. Zhao Y.-Y., Zheng Y.-F. Geochemistry of vein and wallrock carbonates from the Ediacaran system in South China: Insights into the origins of depositional and post-depositional events. Chemical Geology. 2015;(404):71–87. DOI: 10.1016/j.chemgeo.2015.03.018.
24. White W.B., White E.L. Karst Landforms: Scope and Processes in the Early Twenty-First Century. – Academic Press, 2013. pp. 14–22. DOI: 10.1016/B978-0-12-374739-6.00142-1.
25. Vilesov A.P., Chertina K.N. Paleokarst, gidrotermokarst i karstovye kollektory franskix rifov Rybkinskoi gruppy [Paleokarst, hydrothermokarst, and karst reservoirs of the Fransk reefs of the Rybkin Group]. Georesursy. 2020;22(2):15–28. DOI: 10.18599/grs.2020.2.15-28.