M.Yu. Zubkov
Genesis of Cenomanian gas reservoirs (Yamal-Nenets Autonomous District)
DOI 10.31087/0016-7894-2022-5-71-87
Key words: Cenomanian deposits; organic and abiotic methane; tectonic and hydrothermal processes; prediction of gas accumulations.
For citation: Zubkov M.Yu. Genesis of Cenomanian gas reservoirs (Yamal-Nenets Autonomous District). Geologiya nefti i gaza. 2022;(5):71–87. DOI: 10.31087/0016-7894-2022-5-71-87. In Russ.
The authors used the proprietary methodology based on an integration of pyrolysis results and material balance to evaluate oil and gas generation potential of the Organic Matter making a part of Lower Cretaceous deposits and Bolshekhetsky formation sediments. The studies were conducted on core samples taken from one well in the Medvezhy and two wells in the Urengoi fields. The specific volumes of the naphtides formed and the pore space of time-equivalent reservoirs are compared. The following conclusion was drawn: the amount of hydrocarbons generated by the Lower Cretaceous deposits is insufficient for formation of oil and gas accumulations in these sediments, and especially for gas pools formation in Cenomanian deposits. The obtained results of evaluation of the Jurassic sediments oil and gas generation properties showed that they are the main oil and gas source rocks, while the Lower Cretaceous deposits are predominantly reservoirs. The authors discuss the options of biogenic and abiogenic mechanisms of formation of methane that filled Cenomanian sediments. To substantiate the organic genesis of methane, the results of investigations of foreign scientists showing the possibility of methane generation at the expense of the methoxy groups in lignite (brown coal) were used. Abiogenic mechanism of methane production is based on the results of investigations by volcanologists, as well as data on isotopic signature of carbon, which is a part of methane in Cenomanian pools. Evidence has been presented to prove the possible presence of abiogenic (endogenous) methane in Cenomanian sandstone. Based on tectonophysical modelling using optical-polarization and tectonosedimentation methods, the possible mechanism of gas reservoir formation in Cenomanian sediments of the Pokur Formation is reconstructed. Predicted zones of compression and decompaction in modelled sediments are identified. The authors recommend that the method of seismic data integration with tectonophysical modelling carried out using them should be applied to predict hydrocarbon reservoirs.
Mikhail Yu. Zubkov
Candidate of Geology-Mineralogical Science,
Chief Researcher, Director
West Siberian Geological Center,
45, ul. Minskaya, Tyumen, 625027, Russia
e-mail: zubkovMYu@mail.ru
Scopus ID: 7006636487
1. Goncharov V.I. Geokhimiya neftei Zapadnoi Sibiri [Oil geochemistry in Western Siberia]. Moscow: Nedra; 1987. 180 p. In Russ.
2. Kireeva T.A., Budanova D.I. The role of vertical migration of high-temperature fluids in the genesis of formation waters in oil-gas fields in the north of the Western Siberian basin. Moscow University geology bulletin. 2013;68(3):175–184. In Russ.
3. Zubkov M.Yu. Tectonic and hydrothermal process in cretaceous formations of the Western Siberia. Geologiya nefti i gaza. 2019;(1):7–26. DOI: 10,31087/0016-7894-2019-1-7-26. In Russ.
4. Zubkov M.Yu., Marinin V.I., Oblekov G.I. Stepen’ katageneza, a takzhe sootnoshenie neftegeneratsionnykh i emkostnykh svoistv yurskikh i neokomskikh otlozhenii Medvezh’ego i Urengoiskogo mestorozhdenii [Degree of catagenesis and relationship between oil generation and capacity parameters: Jurassic and Neocomian deposits of Medvezhy and Urengoi fields]. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdenii. 2005;(8):18–33. In Russ.
5. Zubkov M.Yu. Application of the modified method of material balance in combination with pyrolysis in estimating the hydrocarbon generation properties of the bazhenov formation, Western Siberia. Geochemistry International. 2021;59(2):171–190. DOI: 10.1134/S0016702921020099.
6. Beskrovnyi N.S., Naboko S.I., Glavatskikh S.F., Lebedev V.A. Uglevodorody v kal’dere Uzon [Hydrocarbons in the Uzon caldera]. In: Vulkanizm, gidrotermal’nyi protsess i rudoobrazovanie. Moscow: Nauka; 1974. 206–210 pp. In Russ.
7. Gutsalo L.K. O razgruzke metana v vodakh termal’nykh istochnikov Kamchatki [Methane spillage in waters of Kamchatka hot springs]. Geokhimiya. 1980(6):351–358. In Russ.
8. Dymkina L.G. Spontannye gazy kal’dery Uzon (Kamchatka) [Unprompted gas spillage in Uzon caldera (Kamchatka)]. Geologiya i geofizika. 1986(12):22–28. In Russ.
9. Karpov G.A. Sovremennye gidrotermy i rtutno-surmyano-mysh’yakovoe orudinenie [Present-day thermal springs and mercury-antimonyarsenic metallization]. Moscow: Nauka; 1988. 183 p. In Russ.
10. Lugovaya I.P., Karpov G.A., Zagnitko V.N., Berezovskii F.I. Proiskhozhdenie spontannykh gazov i termal’nykh vod sovremennoi rudoobrazuyushchei gidrotermal’noi sistemy Uzon na Kamchatke po izotopnym dannym [Origin of spontaneous gas and thermal water in modern oregenetic Uzon hydrothermal system (Kamchatka) according to isotope data]. Sov. Geologiya. 1987;(10):99–107. In Russ.
11. Markhinin E.K. Vulkanizm [Volcanicity]. Moscow: Nedra; 1985. 288 p. In Russ.
12. Naboko S.I. Formirovanie sovremennykh gidroterm i metamorfizm rastvorov i porod [Formation of present-day thermal springs and metamorphism of solutions and rocks]. In: Voprosy vulkanizma. Moscow: Izd-vo AN SSSR; 1962. 52–62 pp. In Russ.
13. Ozerova N.A. Rtutnaya degazatsiya Zemli [Earth mercury degassing]. Dokl. AN SSSR. 1978;239(2):450–453. In Russ.
14. Wight D.A. Mestorozhdeniya rtuti i tsvetnykh metallov, svyazannykh s termal’nymi istochnikami [Mercury and base metal occurrences associated with hot springs]. In: Geokhimiya gidrotermal’nykh rudnykh mestorozhdenii. Moscow: Mir; 1970. 479–528 pp. In Russ.
15. Love J.D., Good J.M. Hydrocarbons in thermal areas, Northwestern Wyoming. Geol. Surv. Prof. Pap. 1970;(644-B):23–121. DOI:10,3133/PP644B.
16. Welhan J.A., Craig H. Methan and hydrogen in East Pacific Rise hydrothermal fluids. Geophys. Res. Lett. 1979;6(11):829–831.
17. Alekseev F.A., Lebedev V.S., Ovsyannikov V.M. Izotopnyi sostav ugleroda gazov biokhimicheskogo proiskhozhdeniya [Isotopic signature of carbon in biochemical natural gas]. Moscow: Nedra; 1973. 89 p. In Russ.
18. Valyaev B.M. Izotopnoe obosnovanie glubinnogo genezisa uglevodorodov [Isotope-based substantiation of deep hydrocarbon genesis]. In: Degazatsiya Zemli i geotektonika. Moscow: Nauka; 1985. 83–88 pp. In Russ.
19. Zor’kin L.M. Geokhimiya gazov plastovykh vod neftegazonosnykh basseinov [Geochemistry of gas in formation water of oil and gas bearing basins]. Moscow: Nedra; 1973. 404 p. In Russ.
20. Taranik A.A. Geochemical characteristics of fields for the production of coal bed methanes an independent source of energy illustrated by Donbass field. Gazovaya promyshlennost’. 2017;755(7):24–27. In Russ.
21. Zubkov M.Y. Application of experimental tectonic methods in petroleum geology on the examples of deposits in Western Siberia. Geotektonics. 2019;53(3):383–398. DOI: 10.1134/S0016852119030105. In Russ.
22. Lloid M.K., Trembath-Reichert E., Dawson R.S., Feakins J., Mastalerz M., Orphan V.J., Sessions L., Eiler M. Methoxyl stable isotopic constraints on the origins and limits of coal-bed methan. Science. 2021;374(6569):894–897. DOI: 10,1126/science.abg0241.
23. Galimov E.M. Geokhimiya stabil’nykh izotopov ugleroda [Geochemistry of carbon stable isotopes]. Moscow: Nedra; 1968. 226 p. In Russ.
24. Stavitsky B.P., Kurchikov A.R., Kontorovich A.E, Plavnik A.G. Hydrochemical zoning of Jurassic and Cretaceous deposits of the West Siberian basin. Russian Geology and Geophysics. 2004;(7):779–785.
25. Usachev V.D. Simulation of water-pressure system of cenomanian pool from development and production logging data (on example of Yamburg oil and gas condensate FIELD). NTV Karotazhnik. 2016;(270):75–87. In Russ.
26. Zubkov M.Yu. Experimental simulation of the process of hydrothermal fluids interaction with the jurassic deposits of the West Siberian basin (Н2O-СО2 system). Geologiya nefti i gaza. 2020;(5):95–112. DOI: 10,31087/0016-7894-2020-5-95-112. In Russ.
27. Kruglikov N.M., Nelyubin V.V., Yakovlev O.N. Gidrogeologiya Zapadno-Sibirskogo neftegazonosnogo megabasseina i osobennosti formirovaniya zalezhei UV [Hydrogeology of West Siberian oil and gas bearing megabasin and features of HC pool formation]. Leningrad: Nedra; 1985. 280 p. In Russ.
28. Zucconi V., Memmo V., Krpan M., Butorac I., Esestime P., Rodriguez K., Yodgson N. Gas potential evaluation offshore Croatia to trigger renewed exploration. FIRST BREAK. 2019;37(11):85–91. DOI:10,3997/1365–2397,2019032.
29. Spravochnik fizicheskikh konstant gornykh porod [Physical constants of rocks: reference book]. In: S. Klark J., ed. Moscow: Mir; 1969. 544 p. In Russ.
Section: Discussions