T.V. Ol’neva, A.S. Egorov, M.Yu. Oreshkova
Improvement of seismic image in interpretation stage for the purposes of seismic facies analysis
DOI 10.31087/0016-7894-2023-6-81-95
Key words: seismic exploration; resolution; frequency-dependent attributes; Frequency Decomposition; paleochannels.
For citation: Ol’neva T.V., Egorov A.S., Oreshkova M.Yu. Improvement of seismic image in interpretation stage for the purposes of seismic facies analysis. Geologiya nefti i gaza. 2023;(6):81–95. DOI: 10.47148/0016-7894-2023-6-81-95. In Russ.
This review relates to an improvement of seismic image in interpretation stage for the purposes of seismic facies analysis. The paper presents in detail the theoretical aspects of vertical and horizontal resolution of seismic data. The authors analyse two technological approaches. The first approach is related to application of feasible wavefield post-processing tools. The paper contains an overview of efficiency of frequency-dependent attribute use, in particular, frequency decomposition of wavefield. The second approach is about an “additional graphical processing” of images, data visualization, and their feasible transformation using tools for direct processing of static images. To illustrate certain provisions and conclusions, the authors concentrate on sedimentary objects, such as paleochannels; the studies of them face limitations caused by resolution of the seismic method. The paper also presents the case study of integrated seismic data interpretation for the Tyumen paleo riverbed system investigations by the example of one field in the Khanty-Mansi Autonomous Okrug. Integration of the approaches of amplitude interpretation of seismic data allows identifying and mapping a network of paleo riverbeds within the study area as well as parametrization of the object with further prediction of riverbed deposit thickness.
Tatiana V. Ol’neva
Doctor of Geological and Mineralogical Sciences,
Leading expert
Gazprom neft companу group,
3–5, ul. Pochtamtskaya, Saint Petersburg, 190000, Russia
e-mail: Olneva.TV@gazpromneft-ntc.ru
Aleksei S. Egorov ORCiD
Doctor of Geological and Mineralogical Sciences,
Professor
St. Petersburg Mining University,
2, 21st Vasilyevskogo ostrova line, Saint Petersburg, 199106, Russia
e-mail: egorov_as@pers.spmi.ru
Mariya Yu. Oreshkova ORCiD
Postgraduate
St. Petersburg Mining University,
2, 21st Vasilyevskogo ostrova line,
Saint Petersburg, 199106, Russia
e-mail: s215017@stud.spmi.ru
1. Nezhdanov A.A. Geologicheskaya interpretatsiya seismorazvedochnykh dannykh: Kurs lektsii dlya studentov spetsial’nostei 21.05.02 “Prikladnaya geologiya”, 21.05.03 “Tekhnologiya geologicheskoi razvedki” [Geological interpretation of seismic data: a course of lectures for students specializing in 05.21.02 Applied Geology, 05.21.03 Geological exploration technology]. Tyumen’: Tyumenskii industrial’nyi universitet; 2017. 171 p. In Russ.
2. Sheriff R., Geldart L. Seismorazvedka [Seismic survey]: v 2 Т. Moscow: Mir; 1987. V. 1. 447 p.; V. 2. 400 p. In Russ.
3. Prischepa O.M., Nefedov Y.V., Kochneva O.Y. Raw material base of hard-to-extract oil reserves of Russia. Periodico Tche Quimica. 2020;(17):915–924.
4. Guoqiang X., Bilal U.H. Seismic facies analysis: Past, present, and future. Earth-Science Reviews. 2022;(224).103876. DOI: 10.1016/j.earscirev.2021.103876.
5. Ricker N. The Form and Laws of Propagation of Seismic Wavelets. Geophysics. 1953;(18):10–40. DOI: 10.1190/1.1437843.
6. Widess M.B. How thin is a thin bed? Geophysics. 1973;38(6):1176–1180. DOI: 10.1190/1.1440403.
7. Nigel A. Anstey Seismic Interpretation: The Physical Aspects. Dordrecht: Springer; 1977. 625 p. DOI:10.1007/978-94-015-3924-1.
8. Brown A.R. Interpretation of Three-Dimensional Seismic Data. AAPG & SEG. 1999;42(9):665. DOI: 10.1190/1.9781560802884.
9. Badley M.E. Practical Seismic Interpretation, International Human Resources Development Corporation. 1985, 266 p. DOI: 10.1121/1.395350.
10. Xin C., Zhaowei L., Zhaofeng W., Wenyuan T., Yaliang X., Yanjing L., Xiaodong W., Hongmei W., Yu J., Xiaohuan Y. Complex Reservoirs Characterisation Technique Based on Geological Seismic Conditioning and its Application in a Oilfield, Middle East. In: Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference : mat-ly mezhd. konf-tsii (Abu Dhabi, 12–15 November, 2018). 2018. DOI: 10.2118/193239-MS.
11. Yunlong Zh., Cheng Y., Ding F. The identification of thin interbedded sandstone boundaries based on seismic waveform structure attributes. In: Paper presented at the 2018 SEG International Exposition and Annual Meeting : mat-ly mezhd. konf-tsii (Anaheim, USA, 17 October 2018). Anaheim; 2018. pp. 1673–1677. DOI: 10.1190/segam2018-2995954.1.
12. Egorov A.S., Glazunov V.V., Sysoev A.P. Geofizicheskie metody poiskov i razvedki mestorozhdenii [Geophysical methods of prospecting and exploration of deposits]. St. Petersburg: Gornyi universitet, 2016. 275 p. In Russ.
13. Rukovodstvo po interpretatsii seismicheskikh atributov [Guide to Seismic Attribute Interpretation]. In: R. Daber, L. Gustafson, R. Pepper et al. eds. Petrel, Schlumberger, 2007. 119 p. In Russ.
14. Chakraborty A., Okaya D. Frequency-time decomposition of seismic data using wavelet-based methods. Geophysics. 1995;60(6):1906–1916. DOI: 10.1190/1.1443922.
15. Zabibi N.E., Siahkoohi H.R. Single frequency seismic attribute based on Short Time Fourier Transform, Continous Wavelet Transform, and S Transform : mat-ly 6th mezhd. konf-tsii (Kolkata, 9–11 January 2006). Kolkata; 2006. pp.662–666. Available at: https://spgindia.org/conference/6thconf_kolkata06/222.pdf (accessed 18.06.2023)
16. Morlet J., Arens G., Fourgeau E., Glard D. Wave propagation and sampling theory — Part I: Complex signal and scattering in multilayered media. Geophysics. 1982;47(2):203–221. DOI: 10.1190/1.1441328.
17. Partyka G.A., Gridley J., Lopez J. Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge. 1999;18(3):353–360. DOI: 10.1190/1.1438295.
18. Laughlin K., Garossino P., Partyka G. Spectral decomposition applied in 3D. AAPG Explorer. 2002;23(5):28–31.
19. Chopra S., Marfurt K. Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series. 2007(11):481 p. DOI: 10.1190/1.9781560801900.
20. Ol’neva T.V., Zhukovskaya E.A. Kompleksnoe izuchenie tolshchi neogenovykh otlozhenii Pannonskogo basseina na osnove seismostratigraficheskikh podkhodov s elementami seismofatsial’nogo analiza [Comprehensive study of the Neogene deposits of the Pannonian basin based on seismostratigraphic approaches with elements of seismic facies analysis]. Zapiski Gornogo instituta. 2017;228:631–641. DOI: 10.25515/pmi.2017.6.631. In Russ.
21. Grinevskiy A., Kazora I., Kerusov I., Miroshnichenko D. Seismic Reservoir Characterization of Tyumen Formation in Frolov Megadepression: mat-ly mezhd. konf-tsii SPE Russian Petroleum Technology Conference (October, Online, 2021). DOI: 10.2118/206592-MS. In Russ.
22. Boustani B., Javaherian A., Nabi-Bidhendi M., Torabi S., Amindavar H.R. Mapping channel edges in seismic data using curvelet transform and morphological filter. Journal of Applied Geophysics. 2019;160:57–68. DOI: 10.1016/J.JAPPGEO.2018.11.004.
23. Ol’neva T.V., Zhukovskaya E.A. Sposob prognozirovaniya morfometricheskikh parametrov ruslovykh tel (paleokanalov) [Method for predicting morphometric parameters of channel bodies (paleochannels)]: Patent RF № 2672766. 2018. In Russ.
Section: Geophysical surveys